Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wireless sensor network monitors microclimate in the forest

20.05.2011
During a forest monitoring operation, forestry scientists measure various environmental values. This is how they obtain indications about how the forests are changing and what can be done to preserve them. However, installing and maintaining the wired measuring stations is complex: Researchers developed a wireless alternative.

What effect does climate change have on our local forests? What types of trees will be suitable for which geographic location? And how great is the pollution level here? Forestry scientists are conducting „forest monitoring” procedures:


They continuously record parameters such as soil humidity or pollutant penetration at permanently installed monitoring stations. The results of such examinations contribute to maintaining the ecological stability of the forests over the long term. The problem: Not only are the wired measuring devices complex to install and maintain, they also hinder silvicultural work in the forest.

In the future, technologies from the Fraunhofer Institute for Microelectronic Circuits and Systems IMS could enable differentiated analysis without any bothersome cables. Scientist from the institute in Duisburg installed a new type of system for microclimatic monitoring on the grounds of the Northwest German Forestry Testing Facility in Göttingen, Germany. “We are using a wireless sensor network so we can measure relevant parameters within an area at many sites simultaneously,” explains Hans-Christian Müller, group manager at the IMS. This way, we receive a very detailed picture about the environmental conditions on site, without much installation effort. Depending on which values they are to measure – for example, soil moisture content, air temperature or the moisture in the leaves – different sensor nodes are inserted into the soil or affixed to branches.

If required, the measuring positions can be changed without much effort. The intelligent mini-computers automatically form a network and control the transmission of measurement data within this network. The results are transmitted by cellular radio to a central tree stock database. To facilitate this, a mobile cellular modem is connected directly to the sensor network.

Providing power to the sensor nodes poses a particular challenge. Mounting solar cells to the sensors – a favored solution in other agrarian and forestry applications – is not an option due to the low penetration of sunlight under the leafy canopy of the trees. That‘s why, to date, there has been no alternative to batteries that have to be replaced regularly. Researchers, however, managed to significantly increase battery life, keeping maintenance requirements within reasonable limits: “We adapted the software design accordingly and now have operating times of 12 months,“ says Müller. A software solution integrated into the sensors ensures that the radio nodes are for the most part in an energy-saving sleep mode. They are active only during the measurement and data transmission process. The measurement intervals can be set to be variable. Parameters that change slowly such assoil moisture need not be measured as often as air temperature, for example, which is subject to larger variations. Since data transmission requires the most energy, the measurement values are calculated as early as the sensor node. This reduces the data volume.

The new technology is already in use in Göttingen as part of the joint project "Smart Forest". The project aims to optimize forestry processes with the aid of microelectronic components. The researchers from IZM will be introducing their results on the “Smart Forests” as well as other developments on the industrial application of wireless sensor networks at the Messe Sensor + Test tradeshow from June 7 – 9 in Nuremberg, Germany, in Hall 12, Booth 231.

Hans-Christian Müller | EurekAlert!
Further information:
http://www.fraunhofer.de/en/press/research-news/2010-2011/17/microclimate-forest.jsp

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>