Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wind pushes plastics deeper into oceans, driving trash estimates up

26.04.2012
While working on a research sailboat gliding over glassy seas in the Pacific Ocean, oceanographer Giora Proskurowski noticed something new: The water was littered with confetti-size pieces of plastic debris, until the moment the wind picked up and most of the particles disappeared.

After taking samples of water at a depth of 16 feet (5 meters), Proskurowski, a researcher at the University of Washington, discovered that wind was pushing the lightweight plastic particles below the surface. That meant that decades of research into how much plastic litters the ocean, conducted by skimming only the surface, may in some cases vastly underestimate the true amount of plastic debris in the oceans, Proskurowski said.

Reporting in the journal of Geophysical Research Letters this month, Proskurowski and co-lead author Tobias Kukulka, University of Delaware, said that data collected from just the surface of the water commonly underestimates the total amount of plastic in the water by an average factor of 2.5. In high winds the volume of plastic could be underestimated by a factor of 27.

"That really puts a lot of error into the compilation of the data set," Proskurowski said. The paper also detailed a new model that researchers and environmental groups can use to collect more accurate data in the future.

Plastic waste in the oceans is a concern because of the impact it might have on the environment. For instance, when fish ingest the plastics, it may degrade their liver functions. In addition, the particles make nice homes for bacteria and algae, which are then transported along with the particles into different regions of the ocean where they may be invasive and cause problems.

Proskurowski gathered data on a 2010 North Atlantic expedition where he and his team collected samples at the surface, plus an additional three or four depths down as far as 100 feet.

"Almost every tow we did contained plastic regardless of the depth," he said.

By combining the data with wind measurements, Proskurowski and his co-authors developed a simplified mathematical model that could potentially be used to match historical weather data, collected by satellite, with previous surface sampling to more accurately estimate the amount of plastic in the oceans.

In addition, armed with the new model, organizations and researchers in the future might monitor wind data and combine it with surface collections in order to better estimate how much plastic waste is in our oceans.

"By factoring in the wind, which is fundamentally important to the physical behavior, you're increasing the rigor of the science and doing something that has a major impact on the data," Proskurowski said.

The team plans to publish a "recipe" that simplifies the model so that a wide range of groups investigating ocean plastics, including those that aren't oceanographers, can easily use the model. Following the recipe, which is available now by request, might encourage some consistency among the studies, he said.

"On this topic, what science needs to be geared toward is building confidence that scientists have solid numbers and that policy makers aren't making judgments based on CNN reports," he said. Descriptions of the so-called great Pacific garbage patch in widespread news reports may have led many people to imagine a giant, dense island of garbage while in fact the patch is made up of widely dispersed, millimeter-size pieces of debris, he said.

In the future, Proskurowski hopes to examine additional factors, including the drag of the plastics in water, complex ocean turbulence and wave height, that might improve the accuracy of the model. He also may have the chance to examine the relationship between wind speed and depth of plastic particles. The 2010 expedition had near-uniform wind conditions so the researchers were unable to test that relationship.

"This is a first pass," he said.

Other co-authors of the paper are Kara Lavendar Law and Skye Morét-Ferguson, Sea Education Association, and Dylan Meyer, an undergraduate student from Eckerd College. Support for the project came from NOAA and the University of Delaware. The researchers relied on data collected by students participating in the Sea Education Association's Plastics at SEA program.

For more information:
Proskurowski, 206-685-3507, giora@uw.edu
Suggested web sites:
Giora Proskurowski http://www.ooi.washington.edu/story/Giora++Proskurowski
UW School of Oceanography http://www.ocean.washington.edu/
Paper abstract http://www.agu.org/pubs/crossref/2012/2012GL051116.shtml
Tobias Kukulka http://www.ceoe.udel.edu/people/profile.aspx?kukulka
2010 North Atlantic Expedition http://www.sea.edu/plastics/index.htm
The great Pacific garbage patch http://marinedebris.noaa.gov/info/patch.html
Sea Education Association http://www.sea.edu/

Nancy Gohring | EurekAlert!
Further information:
http://www.uw.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>