Wildfires closely linked to climate change

The researchers analyzed the variation in wildfires in response to the abrupt climate change that took place between 13,000 and 11,000 years ago. The results provide valuable information about possible trends in wildfires in the future. These findings have been published on line in Proceedings of the National Academy of Sciences (PNAS) dated 3 February 2009.

The authors of the article studied the period from 15,000 to 10,000 years ago which was characterized by very large scale environmental change, similar to that which is emerging today. They reconstructed the history of wildfires between 15,000 and 10,000 BP (1) from sedimentary charcoal records. By studying fossil pollen, they were able to show that there was a major increase in plant biomass during the warming of the climate that took place from the end of the Younger Dryas (a period of cooling lasting from around 12,900 to 11,700 years ago). They were able to establish clear links between these two sets of data.

Biomass burning gradually increased until the beginning of the Younger Dryas. Although there are records of variation in fire activity between 12,900 and 11,700 BP, there is no evidence for any systematic trend at that time. However, there was a rapid increase in wildfires after the end of the Younger Dryas around 11,700 BP, in other words right at the beginning of the warm climate period known as the Holocene in which we are currently still living. The timing of changes in frequency of fires is neither coincident with emerging population change in human societies, nor with the timing of the extinction of herbivorous megafauna in North America, and even less so with a hypothetical meteorite bombardment, three factors which could have had an effect on the outbreak and spread of fires on a large scale.

The conclusions of the study emphasize the major environmental role played by climate change during a period of accelerated warming in determining broad-scale fire activity.

This study is a logical sequel to another study published in Nature Geoscience in October 2008 (2) which showed that the climate was a natural planet-wide driving force of the fire regime through the centuries that preceded the Industrial revolution.

This research implies that ongoing global warming, which is especially noticeable at temperate and northern latitudes, as well as the forest expansion resulting from major agricultural abandonment in industrialized areas, could promote the spread of climate-driven fires and lead to new societal and environmental risks.

(1) BP: years before present

(2) Marlon J.R., Bartlein P.J., Carcaillet C., Gavin D.G., Harrison S.P., Higuera P.E., Joos F., Power M.J. & Prentice I.C. (2008) Climate and human influences on global biomass burning over the past two millennia. Nature Geoscience 1, 697 – 702 (2008), doi :10.1038/ngeo313

Media Contact

Julien Guillaume alfa

More Information:

http://www.cnrs.fr

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors