Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wilder weather exerts a stronger influence on biodiversity than steadily changing conditions

18.01.2010
An increase in the variability of local conditions could do more to harm biodiversity than slower shifts in climate, a new study has found.

Climate scientists predict more frequent storms, droughts, floods and heat waves as the Earth warms. Although extreme weather would seem to challenge ecosystems, the effect of fluctuating conditions on biodiversity actually could go either way. Species able to tolerate only a narrow range of temperatures, for example, may be eliminated, but instability in the environment can also prevent dominant species from squeezing out competitors.

"Imagine species that have different optimal temperatures for growth. In a fluctuating world, neither can get the upper hand and the two coexist," said Jonathan Shurin, an ecologist at the University of California, San Diego who led the project. Ecologists have observed similar positive effects on populations of organisms as different as herbacious plants, desert rodents, and microscopic animals called zooplankton.

Now a study of zooplankton found in dozens of freshwater lakes over decades of time has revealed both effects. Shurin and colleagues found fewer species in lakes with the most variable water chemistry. But lakes with the greatest temperature variations harbored a greater variety of zooplankton, they report in the journal Ecology Letters January 21.

Their study considered data from nine separate long-term ecological studies that included a total of 53 lakes in North America and Europe. In addition to sampling zooplankton, scientists had also taken physical measurements repeatedly each season for periods ranging from 3 to 44 years.

From these data, they calculated the variability of 10 physical properties, including pH and the levels of nutrients such as organic carbon, phosphorous and nitrogen. Temperatures and the amount of oxygen dissolved in the water at both the surface and bottom of each lake were also included. The authors also teased apart variation based on the pace of change with year-to-year changes considered separately from changes that occurred from season-to-season or on more rapid timescales.

Zooplankton populations respond quickly to changes because they reproduces so fast. "In a summer, you're sampling dozens of generations," Shurin said. "For mammals or annual plants, you would have to watch for hundreds or thousands of years to see the same population turnover."

At every time scale the pattern held: Ecologists found fewer species of zooplankton in lakes with fluctuating water chemistry and greater numbers of species in those with varying temperatures. The authors noted that the temperature variations they observed remained within normal ranges for these lakes. But some chemical measures, particularly pH and levels of phosphorous, strayed beyond normal limits due to pollution and acid rain.

Environmental variability through time could either promote or reduce biodiversity depending on the pace and range of fluctuations, the authors suggested.

"It may depend on the predictability of the environment. If you have a lot of violent changes through time, species may not be able to program their life cycles to be active when conditions are right. They need the ability to read the cues, to hatch out at the right time," Shurin said. "If the environment is very unpredictable, that may be bad for diversity, because many species just won't be able to match their lifecycles to that."

Shurin's 10 co-authors include scientists from environmental agencies in Canada, and universities and research institutes in Canada, Germany, Switzerland and the United States. The Natural Sciences and Engineering Research Council of Canada supported Shurin's work on this study.

Jonathan Shurin | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>