Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WHOI Study Sheds Light on Tunicate Evolution

04.07.2011
Woods Hole Oceanographic Institution (WHOI) researchers have filled an important gap in the study of tunicate evolution by genetically sequencing 40 new specimens of thaliaceans, gelatinous, free-swimming types of tunicates. Their study was featured on the cover of the June issue of the Journal of Plankton Research.

Tunicates are a phylum of animals closely related to vertebrates, with a firm, rubbery outer covering called a tunic, from which the name derives.

“Thaliaceans have been poorly represented in previous studies of tunicate evolution,” said Annette Govindarajan of WHOI and Northeastern University, who performed the research along with WHOI Director of Research Laurence P. Madin and Ann Bucklin of the University of Connecticut at Avery Point. “Our study included 40 new sequences, which allowed us to make new insights on evolutionary relationships both within the Thaliacea, and between thaliaceans and other tunicates,” Govindarajan said.

Thaliaceans play an important role in many ocean ecosystems. They are known for their complex life cycles and their role in the transfer of organic matter from the surface to the deep sea.

The researchers made their discovery by sequencing the gene 18S rDNA. “Relatively little is known about evolutionary relationships within the Thaliacea and between thaliaceans and other tunicates -- for example, how they are related to various groups of ascidians, or sea squirts," Govindarajan said. “Our study presented a molecular phylogeny based on 18S rDNA sequences, including those from 40 newly obtained thaliacean samples.”

There are approximately 72 described species of thaliaceans classified in three subgroups-–the pyrosomes, salps, and doliolids, all of which are planktonic open-ocean animals that people seldom see. Govindarajan and her colleagues found a close relationship between thaliaceans and other types of tunicates, including sea squirts--bottom-dwelling tunicates that commonly overgrow docks and pilings. “The Thaliacea was monophyletic, indicating that the pyrosomes, salps, and doliolids arose from a common ancestor,” she said. “Within the salp lineage, we unexpectedly found the cyclosalp group to be closely related to another salp lineage, despite many morphological and behavioral differences. We also were able to clarify the uncertainty around the salp Weelia (Salpa) cylindrica. Previous work suggested that this species was closely related to species in the genus Salpa, but our results strongly indicated that it is distinct and warrants placement in a separate genus.”

Previous tunicate studies have been based on18S rDNA sequences, but thaliaceans were very poorly represented, Govindarajan said. “There are relatively few thaliacean specialists, and specimens are difficult to obtain and identify. Better thaliacean representation allowed us to make new insights on evolutionary relationships both within the Thaliacea and between thaliaceans and other tunicates.”

The research was funded by the National Science Foundation's Biological Oceanography Program.

The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment.

WHOI Media Relations | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>