Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


WHOI-Led Report Links Sonar to Whale Strandings

Scientists have long been aware of a link between naval sonar exercises and unusual mass strandings of beaked whales. Evidence of such a link triggered a series of lawsuits in which environmental groups sued the U.S. Navy to limit sonar exercises to reduce risk to whales.
In 2008, this conflict rose to the level of the US Supreme Court which had to balance potential threat to whales from sonar against the military risk posed by naval forces inadequately trained to use sonar to detect enemy submarines. The court ruled that the Navy could continue training, but that it was essential for the Navy to develop better methods to protect the whales.

The knowledge most critical to protecting these whales from risk of sonar involves measuring the threshold between safe and risky exposure levels, but until now it has not been known how beaked whales respond to sonar, much less the levels that pose a problem. “We know so little about beaked whales because they prefer deep waters far offshore, where they can dive on one breath of air to depths of over a mile for up to an hour and a half,” said Peter Tyack, a senior scientist at Woods Hole Oceanographic Institution (WHOI).

Now, an international team of researchers reports in a paper led by Tyack the first data on how beaked whales respond to naval sonar exercises. Their results suggest that sonar indeed affects the behavior and movement of whales.

Tyack and his colleagues used two complementary methods to investigate behavioral responses of beaked whales to sonar: “an opportunistic approach that monitored whale responses to multi-day naval exercises involving tactical mid-frequency sonars, and an experimental approach using playbacks of simulated sonar and control sounds to whales tagged with a device that records sound, movement, and orientation,” the researchers report in the current issue of the journal PLOS (Public Library of Science) ONE

That research team developed experiments to slowly increase the level of sonar at a tagged whale, to stop exposure as soon as the whale started responding, to measure that exposure, and to define the response. The experimental approach used tags to measure acoustic exposure and behavioral reactions of beaked whales to one controlled exposure each of simulated military sonar, killer whale calls, and band-limited noise.

“These experiments were very difficult to develop, and it was a major breakthrough simply to be able to develop a study that could safely study these responses,” Tyack said. “All three times that tagged beaked whales were exposed experimentally to playback of sounds when they were foraging at depth, they stopped foraging prematurely and made unusually long and slow ascents to the surface, moving away from the sound.

Beaked whales use their own biosonar to find prey when they are foraging; this means that one can monitor cessation of foraging by listening for when they stop clicking. Once the researchers found that beaked whales responded to sonar by ceasing clicking, they were able to monitor reactions of beaked whales during actual sonar exercises on the range. The research was conducted on a naval testing range where an array of underwater microphones, or hydrophones, covered the seafloor, allowing whale sounds to be monitored over 600 square miles. “During actual sonar exercises, beaked whales were primarily detected near the periphery of the range, on average 16 km away from the sonar transmissions. Once the exercise stopped, beaked whales gradually filled in the center of the range over 2-3 days,” they report.

A satellite tagged whale moved outside the range during an exercise, returning over 2-3 days post-exercise. “The combined results indicate similar disruption of foraging behavior and avoidance by beaked whales in the two different contexts, at exposures well below those used by regulators to define disturbance,” the scientists report.

“This suggests that beaked whales are particularly sensitive to sound. Their behavior tended to be disrupted at exposure levels around 140 decibels (dB), so they may require a lower threshold than many current regulations that anticipate disruption of behavior around 160 dB, ” said Tyack. “But the observations on the naval range suggest that while sonar can disrupt the behavior of the whales, appropriate monitoring and management can reduce the risk of stranding.”

The research was supported by the United States Office of Naval Research, the U.S. Strategic Environmental Research and Development, the Environmental Readiness Division of the U.S. Navy, the U.S. Chief of Naval Operations Submarine Warfare Division (Undersea Surveillance), NOAA and the Joint Industry Program on Sound and Marine Life of the International Association of Oil and Gas Producers. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment.

Media Relations | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>