Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whales Hear Us More Than We Realize

05.05.2014

Sonar signal “leaks” likely audible to some marine mammals

Killer whales and other marine mammals likely hear sonar signals more than we’ve known.


Photo taken under NMFS permit #14534; credit A. Friedlaender

A sperm whale off the coast of southern California

That’s because commercially available sonar systems, which are designed to create signals beyond the range of hearing of such animals, also emit signals known to be within their hearing range, scientists have discovered.

The sound is likely very soft and audible only when the animals are within a few hundred meters of the source, say the authors of a new study. The signals would not cause any actual tissue damage, but it’s possible that they affect the behavior of some marine mammals, which rely heavily on sound to communicate, navigate, and find food.

The findings come from a team of researchers at the Department of Energy’s Pacific Northwest National Laboratory, working together with marine mammal expert Brandon Southall of Southall Environmental Associates. The findings were published April 15 in the journal PLOS ONE.

A team led by Zhiqun (Daniel) Deng, a chief scientist at PNNL, evaluated the signals from three commercially available sonar systems designed to transmit signals at 200 kilohertz. The impact of such systems on marine mammals is not typically analyzed because signals at 200 kilohertz can’t be heard by the animals.

The team found that while most of the energy is transmitted near the intended frequency of 200 kilohertz, some of the sound leaks out to lower frequencies within the hearing range of killer whales and other animals such as harbor porpoises, dolphins and beluga whales. The three systems studied produced signals as low as 90, 105 and 130 kilohertz.

At the levels measured, the sounds would be quieter than many other sounds in the ocean, including the sounds the animals themselves make, and they wouldn’t be heard at all by the animals beyond a few hundred meters.

“These signals are quiet, but they are audible to the animals, and they would be relatively novel since marine mammals don’t encounter many sounds in this range,” said Southall, who is the former director of the Ocean Acoustics Program of the National Oceanic and Atmospheric Administration.

“These sounds have the potential to affect animal behavior, even though the main frequency is above what they primarily hear. It may be that environmental assessments should include the effects of these systems. This may not be a major issue, but it deserves further exploration,” added Southall.

The new findings have their roots in a project to track marine mammals in Puget Sound, which was part of a broader effort to provide information on the environmental impact of a planned tidal energy project there near Seattle. Researchers had planned to use sonar to help locate killer whales, but some marine mammal experts had observed that the animals might actually be hearing the sonar. Those observations led to the study, which was funded by the Department of Energy’s Office of Energy Efficiency and Renewable Energy.

How do the sonar signals actually sound to marine mammals like killer whales? Since high-frequency sonar pings several times per second, it’s possible that it sounds like one continuous, high-pitched hum or ping.

“If you think of a keyboard on a piano, the ships would be hitting the low notes quite hard, the middle keys would be most of the sounds of the animals themselves, and the sonar systems we studied would be relatively quieter sounds in the top few octaves on the right of the keyboard,” said Southall.

The authors of the paper did not directly study the hearing capability of whales and other marine mammals. Instead, the study focused on the sounds produced by sonar systems, discovering that commercial sonar systems are emitting signals within the animals’ known hearing range. Deng and colleagues are currently considering ways to limit signal leakage to reduce the amount of sound from high-frequency sonar systems that would be audible to marine mammals.

# # #

Reference: Z. Daniel Deng, Brandon L. Southall, Thomas J. Carlson, Jinshan Xu, Jayson J. Martinez, Mark A. Weiland, and John M. Ingraham, 200 kHz commercial sonar systems generate lower frequency side lobes audible to some marine mammals, PLOS ONE, April 2014, http://dx.plos.org/10.1371/journal.pone.0095315.

Contact Information

Tom Rickey
tom.rickey@pnnl.gov
509-375-3732

Tom Rickey | newswise
Further information:
http://www.pnnl.gov

Further reports about: Energy Laboratory animals hearing killer whales mammals signals sonar sperm whale whales

More articles from Ecology, The Environment and Conservation:

nachricht Engineers purify sea and wastewater in 2.5 minutes
17.04.2015 | Investigación y Desarrollo

nachricht Expanding rubber plantations 'catastrophic' for endangered species in Southeast Asia
17.04.2015 | University of East Anglia

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Astronomers reveal supermassive black hole's intense magnetic field

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a...

Im Focus: A “pin ball machine” for atoms and photons

A team of physicists from MPQ, Caltech, and ICFO proposes the combination of nano-photonics with ultracold atoms for simulating quantum many-body systems and creating new states of matter.

Ultracold atoms in the so-called optical lattices, that are generated by crosswise superposition of laser beams, have been proven to be one of the most...

Im Focus: UV light robot to clean hospital rooms could help stop spread of 'superbugs'

Can a robot clean a hospital room just as well as a person?

According to new research out of the Texas A&M Health Science Center College of Medicine, that is indeed the case. Chetan Jinadatha, M.D., M.P.H., assistant...

Im Focus: Graphene pushes the speed limit of light-to-electricity conversion

Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales

The efficient conversion of light into electricity plays a crucial role in many technologies, ranging from cameras to solar cells.

Im Focus: Study shows novel pattern of electrical charge movement through DNA

Electrical charges not only move through wires, they also travel along lengths of DNA, the molecule of life. The property is known as charge transport.

In a new study appearing in the journal Nature Chemistry, authors, Limin Xiang, Julio Palma, Christopher Bruot and others at Arizona State University's...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

 
Latest News

Engineer Improves Rechargeable Batteries with MoS2 Nano 'Sandwich'

17.04.2015 | Power and Electrical Engineering

Comparing Climate Models to Real World Shows Differences in Precipitation Intensity

17.04.2015 | Earth Sciences

A blueprint for clearing the skies of space debris

17.04.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>