Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whales Hear Us More Than We Realize

05.05.2014

Sonar signal “leaks” likely audible to some marine mammals

Killer whales and other marine mammals likely hear sonar signals more than we’ve known.


Photo taken under NMFS permit #14534; credit A. Friedlaender

A sperm whale off the coast of southern California

That’s because commercially available sonar systems, which are designed to create signals beyond the range of hearing of such animals, also emit signals known to be within their hearing range, scientists have discovered.

The sound is likely very soft and audible only when the animals are within a few hundred meters of the source, say the authors of a new study. The signals would not cause any actual tissue damage, but it’s possible that they affect the behavior of some marine mammals, which rely heavily on sound to communicate, navigate, and find food.

The findings come from a team of researchers at the Department of Energy’s Pacific Northwest National Laboratory, working together with marine mammal expert Brandon Southall of Southall Environmental Associates. The findings were published April 15 in the journal PLOS ONE.

A team led by Zhiqun (Daniel) Deng, a chief scientist at PNNL, evaluated the signals from three commercially available sonar systems designed to transmit signals at 200 kilohertz. The impact of such systems on marine mammals is not typically analyzed because signals at 200 kilohertz can’t be heard by the animals.

The team found that while most of the energy is transmitted near the intended frequency of 200 kilohertz, some of the sound leaks out to lower frequencies within the hearing range of killer whales and other animals such as harbor porpoises, dolphins and beluga whales. The three systems studied produced signals as low as 90, 105 and 130 kilohertz.

At the levels measured, the sounds would be quieter than many other sounds in the ocean, including the sounds the animals themselves make, and they wouldn’t be heard at all by the animals beyond a few hundred meters.

“These signals are quiet, but they are audible to the animals, and they would be relatively novel since marine mammals don’t encounter many sounds in this range,” said Southall, who is the former director of the Ocean Acoustics Program of the National Oceanic and Atmospheric Administration.

“These sounds have the potential to affect animal behavior, even though the main frequency is above what they primarily hear. It may be that environmental assessments should include the effects of these systems. This may not be a major issue, but it deserves further exploration,” added Southall.

The new findings have their roots in a project to track marine mammals in Puget Sound, which was part of a broader effort to provide information on the environmental impact of a planned tidal energy project there near Seattle. Researchers had planned to use sonar to help locate killer whales, but some marine mammal experts had observed that the animals might actually be hearing the sonar. Those observations led to the study, which was funded by the Department of Energy’s Office of Energy Efficiency and Renewable Energy.

How do the sonar signals actually sound to marine mammals like killer whales? Since high-frequency sonar pings several times per second, it’s possible that it sounds like one continuous, high-pitched hum or ping.

“If you think of a keyboard on a piano, the ships would be hitting the low notes quite hard, the middle keys would be most of the sounds of the animals themselves, and the sonar systems we studied would be relatively quieter sounds in the top few octaves on the right of the keyboard,” said Southall.

The authors of the paper did not directly study the hearing capability of whales and other marine mammals. Instead, the study focused on the sounds produced by sonar systems, discovering that commercial sonar systems are emitting signals within the animals’ known hearing range. Deng and colleagues are currently considering ways to limit signal leakage to reduce the amount of sound from high-frequency sonar systems that would be audible to marine mammals.

# # #

Reference: Z. Daniel Deng, Brandon L. Southall, Thomas J. Carlson, Jinshan Xu, Jayson J. Martinez, Mark A. Weiland, and John M. Ingraham, 200 kHz commercial sonar systems generate lower frequency side lobes audible to some marine mammals, PLOS ONE, April 2014, http://dx.plos.org/10.1371/journal.pone.0095315.

Contact Information

Tom Rickey
tom.rickey@pnnl.gov
509-375-3732

Tom Rickey | newswise
Further information:
http://www.pnnl.gov

Further reports about: Energy Laboratory animals hearing killer whales mammals signals sonar sperm whale whales

More articles from Ecology, The Environment and Conservation:

nachricht Argonne Finds Butanol is Good for Boats
03.08.2015 | Argonne National Laboratory

nachricht Treating ships’ ballast water: filtration preferable to disinfection
30.07.2015 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Glaciers melt faster than ever

Glacier decline in the first decade of the 21st century has reached a historical record, since the onset of direct observations. Glacier melt is a global phenomenon and will continue even without further climate change. This is shown in the latest study by the World Glacier Monitoring Service under the lead of the University of Zurich, Switzerland.

The World Glacier Monitoring Service, domiciled at the University of Zurich, has compiled worldwide data on glacier changes for more than 120 years. Together...

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

“Seeing” molecular interactions could give boost to organic electronics

03.08.2015 | Materials Sciences

Stroke: news about platelets

03.08.2015 | Life Sciences

Molecular Spies to Fight Cancer - Procedure for improving tumor diagnosis successfully tested

03.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>