Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whales Hear Us More Than We Realize

05.05.2014

Sonar signal “leaks” likely audible to some marine mammals

Killer whales and other marine mammals likely hear sonar signals more than we’ve known.


Photo taken under NMFS permit #14534; credit A. Friedlaender

A sperm whale off the coast of southern California

That’s because commercially available sonar systems, which are designed to create signals beyond the range of hearing of such animals, also emit signals known to be within their hearing range, scientists have discovered.

The sound is likely very soft and audible only when the animals are within a few hundred meters of the source, say the authors of a new study. The signals would not cause any actual tissue damage, but it’s possible that they affect the behavior of some marine mammals, which rely heavily on sound to communicate, navigate, and find food.

The findings come from a team of researchers at the Department of Energy’s Pacific Northwest National Laboratory, working together with marine mammal expert Brandon Southall of Southall Environmental Associates. The findings were published April 15 in the journal PLOS ONE.

A team led by Zhiqun (Daniel) Deng, a chief scientist at PNNL, evaluated the signals from three commercially available sonar systems designed to transmit signals at 200 kilohertz. The impact of such systems on marine mammals is not typically analyzed because signals at 200 kilohertz can’t be heard by the animals.

The team found that while most of the energy is transmitted near the intended frequency of 200 kilohertz, some of the sound leaks out to lower frequencies within the hearing range of killer whales and other animals such as harbor porpoises, dolphins and beluga whales. The three systems studied produced signals as low as 90, 105 and 130 kilohertz.

At the levels measured, the sounds would be quieter than many other sounds in the ocean, including the sounds the animals themselves make, and they wouldn’t be heard at all by the animals beyond a few hundred meters.

“These signals are quiet, but they are audible to the animals, and they would be relatively novel since marine mammals don’t encounter many sounds in this range,” said Southall, who is the former director of the Ocean Acoustics Program of the National Oceanic and Atmospheric Administration.

“These sounds have the potential to affect animal behavior, even though the main frequency is above what they primarily hear. It may be that environmental assessments should include the effects of these systems. This may not be a major issue, but it deserves further exploration,” added Southall.

The new findings have their roots in a project to track marine mammals in Puget Sound, which was part of a broader effort to provide information on the environmental impact of a planned tidal energy project there near Seattle. Researchers had planned to use sonar to help locate killer whales, but some marine mammal experts had observed that the animals might actually be hearing the sonar. Those observations led to the study, which was funded by the Department of Energy’s Office of Energy Efficiency and Renewable Energy.

How do the sonar signals actually sound to marine mammals like killer whales? Since high-frequency sonar pings several times per second, it’s possible that it sounds like one continuous, high-pitched hum or ping.

“If you think of a keyboard on a piano, the ships would be hitting the low notes quite hard, the middle keys would be most of the sounds of the animals themselves, and the sonar systems we studied would be relatively quieter sounds in the top few octaves on the right of the keyboard,” said Southall.

The authors of the paper did not directly study the hearing capability of whales and other marine mammals. Instead, the study focused on the sounds produced by sonar systems, discovering that commercial sonar systems are emitting signals within the animals’ known hearing range. Deng and colleagues are currently considering ways to limit signal leakage to reduce the amount of sound from high-frequency sonar systems that would be audible to marine mammals.

# # #

Reference: Z. Daniel Deng, Brandon L. Southall, Thomas J. Carlson, Jinshan Xu, Jayson J. Martinez, Mark A. Weiland, and John M. Ingraham, 200 kHz commercial sonar systems generate lower frequency side lobes audible to some marine mammals, PLOS ONE, April 2014, http://dx.plos.org/10.1371/journal.pone.0095315.

Contact Information

Tom Rickey
tom.rickey@pnnl.gov
509-375-3732

Tom Rickey | newswise
Further information:
http://www.pnnl.gov

Further reports about: Energy Laboratory animals hearing killer whales mammals signals sonar sperm whale whales

More articles from Ecology, The Environment and Conservation:

nachricht Protecting fisheries from evolutionary change
27.04.2016 | International Institute for Applied Systems Analysis (IIASA)

nachricht From waste to resource – how can we turn garbage into gold?
27.04.2016 | DLR Projektträger

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Identifying drug targets for leukaemia

02.05.2016 | Life Sciences

Clay nanotube-biopolymer composite scaffolds for tissue engineering

02.05.2016 | Materials Sciences

NASA's Fermi Telescope helps link cosmic neutrino to blazar blast

02.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>