Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whale Poop Pumps Up Ocean Health

14.10.2010
Whale feces -- should you be forced to consider such matters -- probably conjure images of, well, whale-scale hunks of crud, heavy lumps that sink to the bottom. But most whales actually deposit waste that floats at the surface of the ocean, "very liquidy, a flocculent plume," says University of Vermont whale biologist, Joe Roman.

And this liquid fecal matter, rich in nutrients, has a huge positive influence on the productivity of ocean fisheries, Roman and his colleague, James McCarthy from Harvard University, have discovered.

Their discovery, published Oct. 11 in the journal PLoS ONE, is what Roman calls a "whale pump."

Whales, they found, carry nutrients such as nitrogen from the depths where they feed back to the surface via their feces. This functions as an upward biological pump, reversing the assumption of some scientists that whales accelerate the loss of nutrients to the bottom.

And this nitrogen input in the Gulf of Maine is "more than the input of all rivers combined," they write, some 23,000 metric tons each year.

It is well known that microbes, plankton, and fish recycle nutrients in ocean waters, but whales and other marine mammals have largely been ignored in this cycle. Yet this study shows that whales historically played a central role in the productivity of ocean ecosystems -- and continue to do so despite diminished populations.

Despite the problems of coastal eutrophication -- like the infamous "dead zones" in the Gulf of Mexico caused by excess nitrogen washing down the Mississippi River -- many places in the ocean of the Northern Hemisphere have a limited nitrogen supply.

Including where Roman and McCarthy completed their study: the once fish-rich Gulf of Maine in the western North Atlantic. There, phytoplankton, the base of the food chain, has a brake on its productivity when nitrogen is used up in the otherwise productive summer months. (In other parts of the ocean, other elements are limiting, like iron in some regions of the Southern oceans.)

"We think whales form a really important direct influence on the production of plants at the base of this food web," says McCarthy.

"We found that whales increase primary productivity," Roman says, allowing more phytoplankton to grow, which then "pushes up the secondary productivity," he says, of the critters that rely on the plankton. The result: "bigger fisheries and higher abundances throughout regions where whales occur in high densities," Roman says.

"In areas where whales were once more numerous than they are today, we suggest that they were more productive," say McCarthy.

The numbers of whales that swam the oceans before human harvests began is a question of some controversy. "Conservative estimates are that large whales have been cut to 25 percent," says Roman, "though the work done on whale genetics shows that we’re probably closer to 10 percent," of historical levels. To cover the range of possibilities, Roman and McCarthy’s study considered several scenarios, estimating current whale stocks as 10, 25, or 50 percent of historical levels.

"Anyway you look at it, whales played a much bigger role in ecosystems in the past than they do now," says Roman, a conservation biologist in the University of Vermont’s Rubenstein School of Environment and Natural Resources and the author of a book on whales.

"And everything that we do to enhance recovery and restoration of the great whales to something like pre-harvest levels works against other deleterious effects that humans are causing in the oceans," says McCarthy, like the decline of overall ocean productivity as climate change drives up water temperatures, which, in turn, causes a decline in nutrients for phytoplankton.

A further implication of the new study is that ongoing calls by some governments to relax international whaling restrictions are ill-considered. Culls and bounty programs would reduce nitrogen and "decrease overall productivity," Roman and McCarthy note.

"For a long time, and still today, Japan and other countries have policies to justify the harvest of marine mammals," says Roman. These countries argue that whales compete with their commercial fisheries.

"Our study flips that idea on its head," Roman says, "Not only is that competition small or non-existent, but actually the whales present can increase nutrients and help fisheries and the health of systems wherever they are found. By restoring populations we have a chance to glimpse how amazingly productive these ecosystems were in the past."

Joshua Brown | Newswise Science News
Further information:
http://www.uvm.edu/~jbrown7

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>