Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wetlands could be key in revitalizing acid streams, UT Arlington researchers say

05.09.2013
A team of University of Texas at Arlington biologists working with the U.S. Geological Survey has found that watershed wetlands can serve as a natural source for the improvement of streams polluted by acid rain.

The group, led by associate professor of biology Sophia Passy, also contends that recent increases in the level of organic matter in surface waters in regions of North America and Europe – also known as “brownification” – holds benefits for aquatic ecosystems.


A team of UTA biologists analyzed water samples in the Adirondack Forest Preserve.

The research team’s work appeared in the September issue of the journal Global Change Biology.

The team analyzed water samples collected in the Adirondack Forest Preserve, a six million acre region in northeastern New York. The Adirondacks have been adversely affected by atmospheric acid deposition with subsequent acidification of streams, lakes and soils. Acidification occurs when environments become contaminated with inorganic acids, such as sulfuric and nitric acid, from industrial pollution of the atmosphere.

Inorganic acids from the rain filter through poorly buffered watersheds, releasing toxic aluminum from the soil into the waterways. The overall result is loss of biological diversity, including algae, invertebrates, fish, and amphibians.

“Ecologists and government officials have been looking for ways to reduce acidification and aluminum contamination of surface waters for 40 years. While Clean Air Act regulations have fueled progress, the problem is still not solved,” Passy said. “We hope that future restoration efforts in acid streams will consider the use of wetlands as a natural source of stream health improvement.”

Working during key times of the year for acid deposition, the team collected 637 samples from 192 streams from the Black and Oswegatchie River basins in the Adirondacks. Their results compared biodiversity of diatoms, or algae, with levels of organic and inorganic acids. They found that streams connected to wetlands had higher organic content, which led to lower levels of toxic inorganic aluminum and decreased presence of harmful inorganic acids.

Passy joined the UT Arlington College of Science in 2001. Katrina L. Pound, a doctoral student working in the Passy lab, is the lead author on the study. The other co-author is Gregory B. Lawrence, of the USGS’s New York Water Science Center.

The study authors believe that as streams acidified by acidic deposition pass through wetlands, they become enriched with organic matter, which binds harmful aluminum and limits its negative effects on stream producers. Organic matter also stimulates microbes that process sulfate and nitrate and thus decreases the inorganic acid content.

These helpful organic materials are also present in brownification – a process that some believe is tied to climate change. The newly published paper said that this process might help the recovery of biological communities from industrial acidification.

Many have viewed brownification as a negative environmental development because it is perceived as decreasing water quality for human consumption.

“What we’re saying is that it’s not entirely a bad thing from the perspective of ecosystem health,” Pound said.

The UTA team behind the paper hopes that watershed development, including wetland construction or stream re-channeling to existing wetlands, may become a viable alternative to liming. Liming is now widely used to reduce acidity in streams affected by acid rain but many scientists question its long-term effectiveness.

The new paper is available online at http://onlinelibrary.wiley.com/doi/10.1111/gcb.12265/abstract.

Funding for Passy’s work was provided in part by the New York State Energy Research and Development Authority. The Norman Hackerman Advanced Research Program, a project of the Texas Higher Education Coordinating Board, as well as the US Geological Survey, the Adirondack Lakes Survey Corporation and the New York State Department of Environmental Conservation also provided support.

The University of Texas at Arlington is a comprehensive research institution of more than 33,000 students and more than 2,200 faculty members in the heart of North Texas. Visit www.uta.edu to learn more.

The University of Texas at Arlington is an Equal Opportunity and Affirmative Action employer.

Traci Peterson | EurekAlert!
Further information:
http://www.uta.edu
http://www.uta.edu/news/releases/2013/09/adirondacks-passypaper.php

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>