Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wetlands could be key in revitalizing acid streams, UT Arlington researchers say

05.09.2013
A team of University of Texas at Arlington biologists working with the U.S. Geological Survey has found that watershed wetlands can serve as a natural source for the improvement of streams polluted by acid rain.

The group, led by associate professor of biology Sophia Passy, also contends that recent increases in the level of organic matter in surface waters in regions of North America and Europe – also known as “brownification” – holds benefits for aquatic ecosystems.


A team of UTA biologists analyzed water samples in the Adirondack Forest Preserve.

The research team’s work appeared in the September issue of the journal Global Change Biology.

The team analyzed water samples collected in the Adirondack Forest Preserve, a six million acre region in northeastern New York. The Adirondacks have been adversely affected by atmospheric acid deposition with subsequent acidification of streams, lakes and soils. Acidification occurs when environments become contaminated with inorganic acids, such as sulfuric and nitric acid, from industrial pollution of the atmosphere.

Inorganic acids from the rain filter through poorly buffered watersheds, releasing toxic aluminum from the soil into the waterways. The overall result is loss of biological diversity, including algae, invertebrates, fish, and amphibians.

“Ecologists and government officials have been looking for ways to reduce acidification and aluminum contamination of surface waters for 40 years. While Clean Air Act regulations have fueled progress, the problem is still not solved,” Passy said. “We hope that future restoration efforts in acid streams will consider the use of wetlands as a natural source of stream health improvement.”

Working during key times of the year for acid deposition, the team collected 637 samples from 192 streams from the Black and Oswegatchie River basins in the Adirondacks. Their results compared biodiversity of diatoms, or algae, with levels of organic and inorganic acids. They found that streams connected to wetlands had higher organic content, which led to lower levels of toxic inorganic aluminum and decreased presence of harmful inorganic acids.

Passy joined the UT Arlington College of Science in 2001. Katrina L. Pound, a doctoral student working in the Passy lab, is the lead author on the study. The other co-author is Gregory B. Lawrence, of the USGS’s New York Water Science Center.

The study authors believe that as streams acidified by acidic deposition pass through wetlands, they become enriched with organic matter, which binds harmful aluminum and limits its negative effects on stream producers. Organic matter also stimulates microbes that process sulfate and nitrate and thus decreases the inorganic acid content.

These helpful organic materials are also present in brownification – a process that some believe is tied to climate change. The newly published paper said that this process might help the recovery of biological communities from industrial acidification.

Many have viewed brownification as a negative environmental development because it is perceived as decreasing water quality for human consumption.

“What we’re saying is that it’s not entirely a bad thing from the perspective of ecosystem health,” Pound said.

The UTA team behind the paper hopes that watershed development, including wetland construction or stream re-channeling to existing wetlands, may become a viable alternative to liming. Liming is now widely used to reduce acidity in streams affected by acid rain but many scientists question its long-term effectiveness.

The new paper is available online at http://onlinelibrary.wiley.com/doi/10.1111/gcb.12265/abstract.

Funding for Passy’s work was provided in part by the New York State Energy Research and Development Authority. The Norman Hackerman Advanced Research Program, a project of the Texas Higher Education Coordinating Board, as well as the US Geological Survey, the Adirondack Lakes Survey Corporation and the New York State Department of Environmental Conservation also provided support.

The University of Texas at Arlington is a comprehensive research institution of more than 33,000 students and more than 2,200 faculty members in the heart of North Texas. Visit www.uta.edu to learn more.

The University of Texas at Arlington is an Equal Opportunity and Affirmative Action employer.

Traci Peterson | EurekAlert!
Further information:
http://www.uta.edu
http://www.uta.edu/news/releases/2013/09/adirondacks-passypaper.php

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>