Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Like that Wetland Near You? New Study Predicts Risk of Wetland Habitat Loss in Southern United States

20.05.2011
Baylor University, in collaboration with the U.S Forest Service (USFS) Rocky Mountain Research Station, has developed a model that predicts the risk of wetland habitat loss based on local wetland features and characteristics of the landscape surrounding the wetland. The new model was used to predict the fate of wetland habitats over a 13-state area in the southern United States and was published in the journal Ecological Applications.

“Because conservation resources are scarce, it is essential to focus conservation efforts on those geographic areas where the risks for further wetland habitat loss are the greatest,” said Dr. Kevin Gutzwiller, professor of biology at Baylor who co-authored the study with the USFS. “Our predictive model can be used to plan protection efforts by helping to prioritize wetland areas for conservation. The model also can be used to assess the effectiveness of current wetland conservation programs.”

Wetlands are crucial habitats for many plants and animals, yet many are converted for other human land uses. In fact, according to government figures, between 1992 and 1997, more than 500,000 acres of wetlands were lost in the United States. Seventy-five percent of those losses were attributed to development or agriculture. The greatest loss during this period occurred in the southern United States, with development as the main reason for wetland habitat loss.

The researchers focused their study on the southern United States since in that region urbanization and housing development increased at a greater rate than in any other region in the country from the early 1980s to the late 1990s. Moreover, the southern United States also has nearly half the nonfederal wetlands occurring in the contiguous United States, and is the region where the majority of wetland acreage was converted during the 1990s.

The study authors used data obtained from the National Resources Inventory and from the National Land Cover Data from 1992 to 1997. They randomly selected 70 percent of the more than 40,000 observation points to build the model and randomly divided the remaining 30 percent of the data into five separate test data sets.

The study found:

• The variables that best predicted wetland habitat loss were:
o Land-cover and land-use of the surrounding landscape
o Size and proximity of patches of development within 1,900 feet of the wetland
o Road density within 1,900 feet of the wetland
o Land ownership
o The percent of the landscape within 1,900 feet of the wetland that was covered by woody and herbaceous wetland.

• The results imply that the risk of wetland habitat loss was most strongly associated with conditions at or within 1,900 feet of a wetland site.

• For the five test data sets, the statistics indicated the researchers’ model had substantial predictive ability across the study region.

• The model predicted that the risk of wetland habitat loss was greater in and near highlands, such as the Appalachian Mountains, and the Boston and the Ouachita Mountains in Arkansas and Oklahoma. The risk of wetland habitat loss was typically lower in much of the lowlands, such as the Coastal Plain and the Mississippi Basin.

• Throughout the study area, higher predicted risks of wetland habitat loss occurred in and near large urban areas.

“Wetland fate is thought to be influenced by both local and landscape-level processes, and for this reason, we defined two sets of predictors: local predictors that were derived directly from the National Resources Inventory; and landscape predictors derived from the 1992 National Land Cover Data that characterized land-use and land-cover in the vicinity of wetland points,” said Dr. Curtis Flather, study co-author and research wildlife biologist with the USFS Rocky Mountain Research Station.

“Because of their topographic and edaphic characteristics, highlands are likely to be better drained than are lowlands. Wetlands situated in highlands may therefore be less extensive and more isolated than wetlands situated in lowlands. Although the Coastal Plain and Piedmont regions were characterized as having generally lower risks of wetland conversion relative to the highlands, there are notable areas of high risk interspersed throughout these regions,” Flather said.

The study was funded by research joint venture agreements between the USFS, Rocky Mountain Research Station and Baylor University.

For more information, contact Matt Pene, assistant director of media communications at Baylor, at (254) 710-4656 or Jennifer Hayes, acting public affairs officer at USFS, Rocky Mountain Research Station, at (970) 498-1370.

Matt Pene | Newswise Science News
Further information:
http://www.baylor.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>