Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weather matters to particulate pollution

05.12.2008
Dry winter weather and low level mixing of pollutants from vehicle exhausts in cities leads to the highest concentrations of the tiny soot particles, known as PM10 particles, according to German scientists writing in the January issue of the International Journal of Environment and Pollution. Their findings suggest that traffic controls, other than an outright ban for several days at a time, would have little effect on levels.

Particulate matter of less than 10 nanometres across and smaller can penetrate the deepest parts of the lungs. PM10 have thus been associated with an increased incidence of breathing problems, asthma, and even lung cancer among city dwellers.

Jutta Rost of the Meteorological Institute, at the University of Freiburg, and colleagues there and at the Fraunhofer Institute for Transportation and Infrastructure Systems, in Dresden, and the Federal State Institute for Environmental Protection, in Baden-Wuerttemberg, have carried out a retrospective analysis of the atmospheric conditions that affected PM10 levels in four cities in South-West Germany during the period from 2001 to 2005.

For each city, the team obtained particular, PM10, data from roadside stations and Urban Background (UB) stations. This provided them with two distinct types of official urban air quality data against which they could validate their findings. They then looked at atmospheric exchange conditions as represented by sunlight levels, air temperature, wind speed, rainfall, and the height at which PM10 particles and other pollutants are mixing with the atmosphere.

The results of the statistical analysis indicate that precipitation and mixing-layer height are the two main meteorological variables that influencing concentrations of PM10 particles at road level within cities. "The absence of precipitation and low values of the mixing-layer height lead to comparatively high PM10 levels, particularly in winter," the researchers say. The data from both types of measuring stations gave the same results.

The team hopes to develop a forecasting model of PM10 levels that could be used to advise people at most risk of breathing problems on when to avoid city centres and other urban areas. The work also has implications for ensuring that air quality in urban environments is maintained at levels safe for public health.

Albert Ang | alfa
Further information:
http://www.inderscience.com

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>