Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whether the Weather Is Cold or Hot, Rainy or Not, Research Is Ensuring Stormwater Systems Are Designed for the Future

25.04.2012
In a world of changing weather and rainfall patterns, engineers face challenges when designing stormwater management systems.

A Kansas State University team is researching how climate change is affecting rainfall and weather patterns throughout Kansas to help with future adaptation and mitigation strategies. The research team, led by Stacy Hutchinson, associate professor of biological and agricultural engineering, is updating rainfall distribution data to ensure current stormwater management systems can handle future weather changes.

"We are looking at how the state can minimize risk by developing a better understanding of past weather variability while looking forward at the variability expected with future climate change -- whether it is farm production systems or stormwater management," Hutchinson said.

Collaborators on the project include Shawn Hutchinson, associate professor of geography; Aavudai Anandhi Swamy, research assistant professor of agronomy; and Vahid Rahmani, doctoral student in biological and agricultural engineering, Iran. Rahmani is researching Kansas rainfall data and recently received a first-place award at the K-State Research Forum for his oral presentation "Intense rainfall events distribution pattern in the state of Kansas."

"Our research involves understanding how climate change and land cover change -- which is the conversion of natural prairie land and agricultural land to urban and suburban land uses -- affect the potential for flooding," Hutchinson said. "It's where the variability of reality meets the built engineered world."

When engineers design stormwater management systems -- such as terraces and grass waterways in crop fields or storm sewers with underground pipes that transport road runoff to the nearest body of water -- these systems are usually designed to handle a specific storm. In the Manhattan area, natural systems such as grassed waterways and terraces are designed to handle slightly more than 3.5 inches of rain in 24 hours. This rainfall event is expected to happen once every 10 years.

Issues arise because the National Weather Service has not updated rainfall distribution maps for the state of Kansas since 1961. Researchers are updating this data to provide a more accurate weather benchmark that engineers can use when designing stormwater systems. Kansas is ideal for studying climate change and variability because there is more variability across Kansas than from the eastern edge of Kansas to the Atlantic Ocean, Hutchinson said.

To track weather patterns and understand how they have changed, the researchers conducted a similar analysis as the 1961 data. Rahmani studied weather and rainfall data from 24 weather stations in Kansas and 15 stations outside the state. The researchers noticed several trends in the data they collected.

"We're actually seeing more rain across the state, which is kind of surprising because we thought it would be getting drier in the western part of the state," Hutchinson said. "We are getting wetter across the state, but it is much more drastic in the southeast, where we are seeing more high-intensity storms."

The research team found that the 1961 data overestimated the size of storms. That means the currently designed systems are adequate for stormwater management, Hutchinson said, but if the shift in more rain and stronger weather events continues, stormwater systems may need to be redesigned.

"There is discussion among the engineering community about if we need to rethink the size of storm that we design for," Hutchinson said. "The bottom line is that now we have an idea of how weather trends have shifted across the state. This information will be useful to anybody who deals with stormwater runoff -- from the Kansas Department of Transportation to agricultural producers."

The research also is helpful for improving natural stormwater systems, which especially interests Hutchinson. She has studied how to move away from the concrete jungle of pipes and move toward more natural stormwater management systems, such as wetlands, rain gardens and terracing. Challenges exist with natural systems because climate and land cover changes have caused many more peaks and valleys in stormwater runoff -- from times with flooding to drought periods. As a result, natural systems tend to be at capacity in the spring because of increased rainfall and they tend to dry up during the summer when it rains less.

"We needed a better understanding of the variability of the weather so that we could better understand any risks with these natural systems," Hutchinson said. "The amount of water that flows through a pipe is pretty consistent and you can always size a pipe. But the amount of water that can be absorbed by a wetland systems is a lot more in August when it is hot and dry than it is in May."

The researchers are continuing to analyze data and are preparing the research for publication. Their work is funded as part of the $20 million Kansas National Science Foundation Experimental Program to Stimulate Competitive Research project researching global climate change and renewable energy research.

Stacy Hutchinson, 785-532-2943, sllhutch@k-state.edu

Stacy Hutchinson | Newswise Science News
Further information:
http://www.k-state.edu

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>