Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water, water, everywhere… but is it safe to drink?

21.02.2011
"Over the last couple of generations, there has been a huge amount of groundwater pollution worldwide, and this has had a negative impact on our drinking water supply," says Barbara Sherwood Lollar, Canada Research Chair in Isotope Geochemistry of the Earth and the Environment at the University of Toronto.

Sherwood Lollar is taking part in the THINK CANADA Press Breakfast Sunday at AAAS. Her research examines society's efforts to reverse and stop groundwater pollution, and the effectiveness of bioremediation technologies—using microbes to clean up organic contaminants such as petroleum hydrocarbons (oil, gasoline or diesel) or chemicals used in the electronics or transportation industries.

While the disposal of these organic contaminants tends to be well regulated today, this has not always been the case. Lax regulations and enforcement during the period immediately after the Second World War has left Europe and North America with a legacy of past contamination.

"This contamination has had a pervasive impact on the environment," says Sherwood Lollar. "It is still out there, and it needs to be dealt with."

Over the past decade, many techniques used to clean up groundwater contamination have harnessed the power of microbiology and the work of geochemists like Sherwood Lollar. "We are not genetically engineering microbes," she explains. "In many settings, naturally occurring microbes feed off the organic contaminants and, in the process, convert them to non-toxic end products."

Until now, the real difficulty has been in proving that the process exists and that the microbes are actually cleaning up the contaminants. Sherwood Lollar has developed techniques that show where the clean-up is happening and, just as importantly, where it is not.

"Elements like carbon have different stable isotopes: Carbon-12 and Carbon-13. One is slightly heavier than the other, and the microbes tend to feed mostly on the lighter one. When the microbes have been working for some time, the ratio of heavy-to-light carbon will change. It is this change—referred to as an isotopic signature—that lets us know the water is being cleaned up," says Sherwood Lollar.

By cleaning up contaminated groundwater, it is possible to recuperate what would otherwise be a lost resource. The technique is starting to be used by regulators, and Sherwood Lollar is working with an international group of scientists to put together a guidance document for the United States Environmental Protection Agency (EPA).

This will provide a set of recommendations about use in the field for practitioners, which will be a first step towards mainstreaming the technique.

"It's a common misconception that water—and especially our supply of groundwater—is a renewable resource," says Sherwood Lollar. "But it isn't. So, it is particularly important that we manage it well and that we do whatever we can to conserve, protect and remediate what we have."

Sherwood Lollar will present her research and answer questions from the press, as part of the THINK CANADA Press Breakfast on the theme of water. The breakfast will be held in Room 202A of the Washington Convention Center at 8 a.m. on February 20, 2011 and will feature Canadian research experts across natural sciences and engineering, health, social sciences and humanities.

Michael Adams | EurekAlert!
Further information:
http://www.sshrc-crsh.gc.ca

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>