Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water, water, everywhere… but is it safe to drink?

21.02.2011
"Over the last couple of generations, there has been a huge amount of groundwater pollution worldwide, and this has had a negative impact on our drinking water supply," says Barbara Sherwood Lollar, Canada Research Chair in Isotope Geochemistry of the Earth and the Environment at the University of Toronto.

Sherwood Lollar is taking part in the THINK CANADA Press Breakfast Sunday at AAAS. Her research examines society's efforts to reverse and stop groundwater pollution, and the effectiveness of bioremediation technologies—using microbes to clean up organic contaminants such as petroleum hydrocarbons (oil, gasoline or diesel) or chemicals used in the electronics or transportation industries.

While the disposal of these organic contaminants tends to be well regulated today, this has not always been the case. Lax regulations and enforcement during the period immediately after the Second World War has left Europe and North America with a legacy of past contamination.

"This contamination has had a pervasive impact on the environment," says Sherwood Lollar. "It is still out there, and it needs to be dealt with."

Over the past decade, many techniques used to clean up groundwater contamination have harnessed the power of microbiology and the work of geochemists like Sherwood Lollar. "We are not genetically engineering microbes," she explains. "In many settings, naturally occurring microbes feed off the organic contaminants and, in the process, convert them to non-toxic end products."

Until now, the real difficulty has been in proving that the process exists and that the microbes are actually cleaning up the contaminants. Sherwood Lollar has developed techniques that show where the clean-up is happening and, just as importantly, where it is not.

"Elements like carbon have different stable isotopes: Carbon-12 and Carbon-13. One is slightly heavier than the other, and the microbes tend to feed mostly on the lighter one. When the microbes have been working for some time, the ratio of heavy-to-light carbon will change. It is this change—referred to as an isotopic signature—that lets us know the water is being cleaned up," says Sherwood Lollar.

By cleaning up contaminated groundwater, it is possible to recuperate what would otherwise be a lost resource. The technique is starting to be used by regulators, and Sherwood Lollar is working with an international group of scientists to put together a guidance document for the United States Environmental Protection Agency (EPA).

This will provide a set of recommendations about use in the field for practitioners, which will be a first step towards mainstreaming the technique.

"It's a common misconception that water—and especially our supply of groundwater—is a renewable resource," says Sherwood Lollar. "But it isn't. So, it is particularly important that we manage it well and that we do whatever we can to conserve, protect and remediate what we have."

Sherwood Lollar will present her research and answer questions from the press, as part of the THINK CANADA Press Breakfast on the theme of water. The breakfast will be held in Room 202A of the Washington Convention Center at 8 a.m. on February 20, 2011 and will feature Canadian research experts across natural sciences and engineering, health, social sciences and humanities.

Michael Adams | EurekAlert!
Further information:
http://www.sshrc-crsh.gc.ca

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>