Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water table depth tied to droughts

01.10.2008
Will there be another "dust bowl" in the Great Plains similar to the one that swept the region in the 1930s?

It depends on water storage underground. Groundwater depth has a significant effect on whether the Great Plains will have a drought or bountiful year.

Recent modeling results show that the depth of the water table, which results from lateral water flow at the surface and subsurface, determines the relative susceptibility of regions to changes in temperature and precipitation.

"Groundwater is critical to understand the processes of recharge and drought in a changing climate," said Reed Maxwell, an atmospheric scientist at Lawrence Livermore National Laboratory, who along with a colleague at Bonn University analyzed the models that appear in the Sept. 28 edition of the journal Nature Geoscience.

Maxwell and Stefan Kollet studied the response of a watershed in the southern Great Plains in Oklahoma using a groundwater/surface-water/land-surface model.

The southern Great Plains are an important agricultural region that has experienced severe droughts during the past century including the "dust bowl" of the 1930s. This area is characterized by little winter snowpack, rolling terrain and seasonal precipitation.

While the onset of droughts in the region may depend on sea surface temperature, the length and depth of major droughts appear to depend on soil moisture conditions and land-atmosphere interactions.

That's what the recent study takes into account. Maxwell and Kollet created three future climate simulations based on the observed meteorological conditions from 1999. All included an increase in air temperature of 2.5 degrees Celsius. One had no change in precipitation; one had an increase in precipitation by 20 percent; and one had a decrease in precipitation by 20 percent.

"These disturbances were meant to represent the variability and uncertainty in regional changes to central North America under global model simulations of future climate," Maxwell said.

The models showed that groundwater storage acts as a moderator of watershed response and climate feedbacks. In areas with a shallow water table, changes in land conditions, such as how wet or dry the soil is and how much water is available for plant function, are related to an increase in atmospheric temperatures. In areas with deep water tables, changes at the land surface are directly related to amount of precipitation and plant type.

But in the critical zone, identified here between two and five meter's depth, there is a very strong correlation between the water table depth and the land surface.

"These findings also have strong implications for drought and show a strong dependence on areas of convergent flow and water table depth," Maxwell said. "The role of lateral subsurface flow should not be ignored in climate-change simulations and drought analysis."

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>