Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water samples teeming with information: Emerging techniques for environmental monitoring

30.06.2014

Setting effective conservation policies requires near real-time knowledge of environmental conditions. Scientists with Stanford's Center for Ocean Solutions propose using genetic techniques as a low-cost, quick way to collect such data.

Environmental policy must respond to ever-changing conditions on the ground and in the water, but doing so requires a constant flow of information about the living world.


Scientists are using material shed into the environment by animals to survey biological communities.

(Photo: Robert Kennedy)

In a paper published in Science this week, scientists from Stanford's Center for Ocean Solutions, the University of Washington and the University of Copenhagen propose employing emerging environmental DNA (eDNA) sampling techniques that could make assessing the biodiversity of marine ecosystems – from single-cell critters to great white sharks – as easy as taking a water sample.

Controlling invasive species and saving endangered ones are among the many applications of a new set of monitoring tools that use DNA recovered from the environment.

Although traditional sampling methods – including dive surveys and deploying sampling gear in the water – have been widely used in environmental monitoring, they are expensive, invasive and often focus only on a single species. Genetic monitoring via a form of DNA, known as eDNA, that is shed into the environment by animals could overcome some of these issues.

eDNA is like a fingerprint left at a crime scene. This material may come from metabolic waste, damaged tissue or sloughed off skin cells. Once it is collected, scientists can sequence the DNA to create a fast, high-resolution, non-invasive survey of whole biological communities.

"The eDNA work is potentially a game-changer for environmental monitoring," said Larry Crowder, a professor of biology at Stanford's Hopkins Marine Station, senior fellow at the Stanford Woods Institute for the Environment, science director at the Center for Ocean Solutions and a co-author of the study. "A number of laws require monitoring, but actually keeping tabs on large, mobile, cryptic animals is challenging and expensive."

Using DNA to inform policy

The cost of DNA sequencing is decreasing rapidly, a trend that has fueled eDNA studies in recent years.

"We wanted to know how to put these amazing new genetic tools to use," said lead author Ryan Kelly, an assistant professor at the University of Washington and a visiting fellow at the Center for Ocean Solutions. "Harnessing eDNA is a perfect example of how cutting-edge science can plug into many of the environmental laws we have on the books."

Nearly every environmental law imposes environmental monitoring obligations on government or the private sector, said Meg Caldwell, a senior lecturer at the Stanford Woods Institute and Stanford Law School, and executive director of the Center for Ocean Solutions, as well as a contributing author of the study. "Pushing the science of genomics to help society perform monitoring more cheaply and effectively is one of our core goals," she said.

The authors provide several examples of scientific-legal interactions, among them the use of eDNA to inform the enforcement of laws such as the Endangered Species Act and Clean Water Act with detailed, low-cost data.

So far, eDNA has been used to determine the presence or absence of certain target species. This technique is useful for detecting invasive species or changes in the distribution of endangered species. However, scientists are still evaluating how eDNA concentrations relate to specific numbers of organisms in the wild.

A challenging aspect of the approach is determining exactly where the eDNA was generated, especially in dynamic marine systems. eDNA is thought to persist in water for only a few days.

With these limitations, eDNA alone is not yet enough for policy applications, but it is already being used to supplement existing monitoring. This combination approach has recently been used in California to detect human- and animal-based pathogens in waters off state beaches.

"There is much work left to do to develop and validate this approach, but the potential is amazing," Crowder said. "We will continue to work with other scientists at the Center for Ocean Solutions and worldwide to advance and test this approach."

The David and Lucile Packard Foundation provided initial funding for the original concept of the eDNA tool, as part of its core support to the Center for Ocean Solutions, as well as additional funding to begin testing the tool in the field. A recent Environmental Venture Project grant from the Stanford Woods Institute will help researchers refine the eDNA tool.

Julia Turan is an intern at the Stanford News Service.

For more Stanford experts on environmental research and other topics, visit Stanford Experts.

Contact

Larry Crowder, Stanford Center for Ocean Solutions and Stanford Woods Institute for the Environment: (831) 402-6938, larry.crowder@stanford.edu

Jesse Port, Stanford Center for Ocean Solutions: (206) 962-1211, jport@stanford.edu

Terry Nagel, Stanford Woods Institute for the Environment: (650) 498-0607, tnagel@stanford.edu

Bjorn Carey, Stanford News Service: (650) 725-1944, bccarey@stanford.edu

Terry Nagel | Eurek Alert!
Further information:
http://news.stanford.edu/pr/2014/pr-marine-edna-monitoring-062714.html

Further reports about: DNA Environment Environmental Ocean Water animals environment

More articles from Ecology, The Environment and Conservation:

nachricht Man-made underwater sound may have wider ecosystem effects than previously thought
05.02.2016 | University of Southampton

nachricht Sluggish electrons caught in action
04.02.2016 | Max-Planck-Institut für Quantenoptik

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

Im Focus: Energy-saving minicomputers for the ‘Internet of Things’

The ‘Internet of Things’ is growing rapidly. Mobile phones, washing machines and the milk bottle in the fridge: the idea is that minicomputers connected to these will be able to process information, receive and send data. This requires electrical power. Transistors that are capable of switching information with a single electron use far less power than field effect transistors that are commonly used in computers. However, these innovative electronic switches do not yet work at room temperature. Scientists working on the new EU research project ‘Ions4Set’ intend to change this. The program will be launched on February 1. It is coordinated by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

“Billions of tiny computers will in future communicate with each other via the Internet or locally. Yet power consumption currently remains a great obstacle”,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

A new potential biomarker for cancer imaging

05.02.2016 | Life Sciences

Graphene is strong, but is it tough?

05.02.2016 | Materials Sciences

Tiniest Particles Shrink Before Exploding When Hit With SLAC's X-ray Laser

05.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>