Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water samples teeming with information: Emerging techniques for environmental monitoring

30.06.2014

Setting effective conservation policies requires near real-time knowledge of environmental conditions. Scientists with Stanford's Center for Ocean Solutions propose using genetic techniques as a low-cost, quick way to collect such data.

Environmental policy must respond to ever-changing conditions on the ground and in the water, but doing so requires a constant flow of information about the living world.


Scientists are using material shed into the environment by animals to survey biological communities.

(Photo: Robert Kennedy)

In a paper published in Science this week, scientists from Stanford's Center for Ocean Solutions, the University of Washington and the University of Copenhagen propose employing emerging environmental DNA (eDNA) sampling techniques that could make assessing the biodiversity of marine ecosystems – from single-cell critters to great white sharks – as easy as taking a water sample.

Controlling invasive species and saving endangered ones are among the many applications of a new set of monitoring tools that use DNA recovered from the environment.

Although traditional sampling methods – including dive surveys and deploying sampling gear in the water – have been widely used in environmental monitoring, they are expensive, invasive and often focus only on a single species. Genetic monitoring via a form of DNA, known as eDNA, that is shed into the environment by animals could overcome some of these issues.

eDNA is like a fingerprint left at a crime scene. This material may come from metabolic waste, damaged tissue or sloughed off skin cells. Once it is collected, scientists can sequence the DNA to create a fast, high-resolution, non-invasive survey of whole biological communities.

"The eDNA work is potentially a game-changer for environmental monitoring," said Larry Crowder, a professor of biology at Stanford's Hopkins Marine Station, senior fellow at the Stanford Woods Institute for the Environment, science director at the Center for Ocean Solutions and a co-author of the study. "A number of laws require monitoring, but actually keeping tabs on large, mobile, cryptic animals is challenging and expensive."

Using DNA to inform policy

The cost of DNA sequencing is decreasing rapidly, a trend that has fueled eDNA studies in recent years.

"We wanted to know how to put these amazing new genetic tools to use," said lead author Ryan Kelly, an assistant professor at the University of Washington and a visiting fellow at the Center for Ocean Solutions. "Harnessing eDNA is a perfect example of how cutting-edge science can plug into many of the environmental laws we have on the books."

Nearly every environmental law imposes environmental monitoring obligations on government or the private sector, said Meg Caldwell, a senior lecturer at the Stanford Woods Institute and Stanford Law School, and executive director of the Center for Ocean Solutions, as well as a contributing author of the study. "Pushing the science of genomics to help society perform monitoring more cheaply and effectively is one of our core goals," she said.

The authors provide several examples of scientific-legal interactions, among them the use of eDNA to inform the enforcement of laws such as the Endangered Species Act and Clean Water Act with detailed, low-cost data.

So far, eDNA has been used to determine the presence or absence of certain target species. This technique is useful for detecting invasive species or changes in the distribution of endangered species. However, scientists are still evaluating how eDNA concentrations relate to specific numbers of organisms in the wild.

A challenging aspect of the approach is determining exactly where the eDNA was generated, especially in dynamic marine systems. eDNA is thought to persist in water for only a few days.

With these limitations, eDNA alone is not yet enough for policy applications, but it is already being used to supplement existing monitoring. This combination approach has recently been used in California to detect human- and animal-based pathogens in waters off state beaches.

"There is much work left to do to develop and validate this approach, but the potential is amazing," Crowder said. "We will continue to work with other scientists at the Center for Ocean Solutions and worldwide to advance and test this approach."

The David and Lucile Packard Foundation provided initial funding for the original concept of the eDNA tool, as part of its core support to the Center for Ocean Solutions, as well as additional funding to begin testing the tool in the field. A recent Environmental Venture Project grant from the Stanford Woods Institute will help researchers refine the eDNA tool.

Julia Turan is an intern at the Stanford News Service.

For more Stanford experts on environmental research and other topics, visit Stanford Experts.

Contact

Larry Crowder, Stanford Center for Ocean Solutions and Stanford Woods Institute for the Environment: (831) 402-6938, larry.crowder@stanford.edu

Jesse Port, Stanford Center for Ocean Solutions: (206) 962-1211, jport@stanford.edu

Terry Nagel, Stanford Woods Institute for the Environment: (650) 498-0607, tnagel@stanford.edu

Bjorn Carey, Stanford News Service: (650) 725-1944, bccarey@stanford.edu

Terry Nagel | Eurek Alert!
Further information:
http://news.stanford.edu/pr/2014/pr-marine-edna-monitoring-062714.html

Further reports about: DNA Environment Environmental Ocean Water animals environment

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>