Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water samples teeming with information: Emerging techniques for environmental monitoring

30.06.2014

Setting effective conservation policies requires near real-time knowledge of environmental conditions. Scientists with Stanford's Center for Ocean Solutions propose using genetic techniques as a low-cost, quick way to collect such data.

Environmental policy must respond to ever-changing conditions on the ground and in the water, but doing so requires a constant flow of information about the living world.


Scientists are using material shed into the environment by animals to survey biological communities.

(Photo: Robert Kennedy)

In a paper published in Science this week, scientists from Stanford's Center for Ocean Solutions, the University of Washington and the University of Copenhagen propose employing emerging environmental DNA (eDNA) sampling techniques that could make assessing the biodiversity of marine ecosystems – from single-cell critters to great white sharks – as easy as taking a water sample.

Controlling invasive species and saving endangered ones are among the many applications of a new set of monitoring tools that use DNA recovered from the environment.

Although traditional sampling methods – including dive surveys and deploying sampling gear in the water – have been widely used in environmental monitoring, they are expensive, invasive and often focus only on a single species. Genetic monitoring via a form of DNA, known as eDNA, that is shed into the environment by animals could overcome some of these issues.

eDNA is like a fingerprint left at a crime scene. This material may come from metabolic waste, damaged tissue or sloughed off skin cells. Once it is collected, scientists can sequence the DNA to create a fast, high-resolution, non-invasive survey of whole biological communities.

"The eDNA work is potentially a game-changer for environmental monitoring," said Larry Crowder, a professor of biology at Stanford's Hopkins Marine Station, senior fellow at the Stanford Woods Institute for the Environment, science director at the Center for Ocean Solutions and a co-author of the study. "A number of laws require monitoring, but actually keeping tabs on large, mobile, cryptic animals is challenging and expensive."

Using DNA to inform policy

The cost of DNA sequencing is decreasing rapidly, a trend that has fueled eDNA studies in recent years.

"We wanted to know how to put these amazing new genetic tools to use," said lead author Ryan Kelly, an assistant professor at the University of Washington and a visiting fellow at the Center for Ocean Solutions. "Harnessing eDNA is a perfect example of how cutting-edge science can plug into many of the environmental laws we have on the books."

Nearly every environmental law imposes environmental monitoring obligations on government or the private sector, said Meg Caldwell, a senior lecturer at the Stanford Woods Institute and Stanford Law School, and executive director of the Center for Ocean Solutions, as well as a contributing author of the study. "Pushing the science of genomics to help society perform monitoring more cheaply and effectively is one of our core goals," she said.

The authors provide several examples of scientific-legal interactions, among them the use of eDNA to inform the enforcement of laws such as the Endangered Species Act and Clean Water Act with detailed, low-cost data.

So far, eDNA has been used to determine the presence or absence of certain target species. This technique is useful for detecting invasive species or changes in the distribution of endangered species. However, scientists are still evaluating how eDNA concentrations relate to specific numbers of organisms in the wild.

A challenging aspect of the approach is determining exactly where the eDNA was generated, especially in dynamic marine systems. eDNA is thought to persist in water for only a few days.

With these limitations, eDNA alone is not yet enough for policy applications, but it is already being used to supplement existing monitoring. This combination approach has recently been used in California to detect human- and animal-based pathogens in waters off state beaches.

"There is much work left to do to develop and validate this approach, but the potential is amazing," Crowder said. "We will continue to work with other scientists at the Center for Ocean Solutions and worldwide to advance and test this approach."

The David and Lucile Packard Foundation provided initial funding for the original concept of the eDNA tool, as part of its core support to the Center for Ocean Solutions, as well as additional funding to begin testing the tool in the field. A recent Environmental Venture Project grant from the Stanford Woods Institute will help researchers refine the eDNA tool.

Julia Turan is an intern at the Stanford News Service.

For more Stanford experts on environmental research and other topics, visit Stanford Experts.

Contact

Larry Crowder, Stanford Center for Ocean Solutions and Stanford Woods Institute for the Environment: (831) 402-6938, larry.crowder@stanford.edu

Jesse Port, Stanford Center for Ocean Solutions: (206) 962-1211, jport@stanford.edu

Terry Nagel, Stanford Woods Institute for the Environment: (650) 498-0607, tnagel@stanford.edu

Bjorn Carey, Stanford News Service: (650) 725-1944, bccarey@stanford.edu

Terry Nagel | Eurek Alert!
Further information:
http://news.stanford.edu/pr/2014/pr-marine-edna-monitoring-062714.html

Further reports about: DNA Environment Environmental Ocean Water animals environment

More articles from Ecology, The Environment and Conservation:

nachricht Coorong Fish Hedge Their Bets for Survival
27.03.2015 | University of Adelaide

nachricht Greener Industry If Environmental Authorities Change Strategy
27.03.2015 | University of Gothenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Two Most Destructive Termite Species Forming Superswarms in South Florida

27.03.2015 | Agricultural and Forestry Science

ORNL-Led Team Demonstrates Desalination with Nanoporous Graphene Membrane

27.03.2015 | Materials Sciences

Coorong Fish Hedge Their Bets for Survival

27.03.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>