Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warming Temperatures Are Pushing Two Chickadee Species—and Their Hybrids—Northward

07.03.2014

DNA sleuthing confirms chickadee “hybrid zone” marching northward as climate warms

The zone of overlap between two popular, closely related backyard birds is moving northward at a rate that matches warming winter temperatures, according to a study by researchers from the Cornell Lab of Ornithology, Villanova University, and Cornell University. The research was published online in Current Biology on Thursday, March 6, 2014.


Photo by Ann Marie Halstead/Cornell Lab.

Black-capped Chickadees are common backyard birds across northern North America. The best way to distinguish them from Carolina Chickadees is the larger white patches on the wings, and their two-parted song.

In a narrow strip that runs across the eastern U.S., Carolina Chickadees from the south meet and interbreed with Black-capped Chickadees from the north. The new study finds that this hybrid zone has moved northward at a rate of 0.7 mile per year over the last decade. That’s fast enough that the researchers had to add an extra study site partway through their project in order to keep up.

“A lot of the time climate change doesn't really seem tangible,” said lead author Scott Taylor, a postdoctoral researcher at the Cornell Lab of Ornithology. “But here are these common little backyard birds we all grew up with, and we’re seeing them moving northward on relatively short time scales.”

In Pennsylvania, where the study was conducted, the hybrid zone is just 21 miles across on average. Hybrid chickadees have lower breeding success and survival than either of the pure species. This keeps the contact zone small and well defined, making it a convenient reference point for scientists aiming to track environmental changes.

“Hybridization is kind of a brick wall between these two species,” said Robert Curry, PhD, a professor of biology at Villanova University, who led the field component of the study. “Carolina Chickadees can’t blithely disperse north without running into black-caps and creating hybrids. That makes it possible to keep an eye on the hybrid zone and see exactly how the ranges are shifting.”

The researchers drew on field studies, genetic analyses, and crowdsourced bird sightings. First, detailed observations and banding data from sites arrayed across the hybrid zone provided a basic record of how quickly the zone moved. Next, genetic analyses revealed in unprecedented detail the degree to which hybrids shared the DNA of both parent species. And then crowdsourced data drawn from eBird, a citizen-science project run by the Cornell Lab, allowed the researchers to expand the scale of the study and match bird observations with winter temperatures.

The researchers analyzed blood samples from 167 chickadees—83 collected in 2000–2002 and 84 in 2010–2012. Using next-generation genetic sequencing, they looked at more than 1,400 fragments of the birds’ genomes to see how much was Black-capped Chickadee DNA and how much was Carolina.

The site that had been in the middle of the hybrid zone at the start of the study was almost pure Carolina Chickadees by the end. The next site to the north, which Curry and his students had originally picked as a stronghold of Black-capped Chickadees, had become dominated by hybrids.

Female Carolina Chickadees seem to be leading the charge, Curry said. Field observations show that females move on average about 0.6 mile between where they’re born and where they settle down. That’s about twice as far as males and almost exactly as fast as the hybrid zone is moving.

As a final step, the researchers overlaid temperature records on a map of the overlap zone, drawn from eBird sightings of the two chickadee species. They found a very close match: the zone of overlap occurred only in areas where the average winter low temperature was between 14 and 20 degrees Fahrenheit. They also used eBird records to estimate where the overlap zone had been a decade earlier, and found the same relationship with temperature existed then, too. The only difference was that those temperatures had shifted to the north by about seven miles since 2000.

Chickadees—there are seven species in North America—are fixtures in most of the backyards of the continent. These tiny, fluffy birds with bold black-and-white faces are favorite year-round visitors to bird feeders, somehow surviving cold winters despite weighing less than half an ounce.

To the untrained eye the Carolina Chickadee of the southeastern U.S. is almost identical to the more northern Black-capped Chickadee—although the Carolina has a shorter tail, less white on its shoulders, and a song of four notes instead of two notes. Genetic research indicates the two have been distinct species for at least 2.5 million years.

“The rapidity with which these changes are happening is a big deal,” Taylor said. “If we can see it happening with chickadees, which are pretty mobile, we should think more closely about what’s happening to other species. Small mammals, insects, and definitely plants are probably feeling these same pressures—they’re just not as able to move in response.”

In addition to Taylor and Curry, the authors include Thomas White of Cornell University, Valentina Ferretti of Villanova University, and Wesley Hochachka and Irby Lovette of the Cornell Lab.
###

Media Contacts:
Pat Leonard, Cornell Lab of Ornithology: 607-254-2137, pel27@cornell.edu
Kiera Daly, Villanova University: 610-519-7357, kiera.daly@villanova.edu

The following multimedia are available for reporters to use with their stories:

Black-capped Chickadee image
Caption and photo credit: Black-capped Chickadees are common backyard birds across northern North America. The best way to distinguish them from Carolina Chickadees is the larger white patches on the wings, and their two-parted song. Photo by Ann Marie Halstead/Cornell Lab.
Download link:
http://www.allaboutbirds.org/bbimages/CLO/images/News_Releases/black-capped_chickadee_halstead.jpg

Carolina Chickadee image
Caption and photo credit: Carolina Chickadees are common backyard birds throughout the southeastern United States. They have mostly gray wings and sing a four-parted song. Photo by Diane Lepkowski/Cornell Lab.
Download link:
http://www.allaboutbirds.org/bbimages/CLO/images/News_Releases/carolina_chickadee_Lepkowski.jpg

Map of the chickadee hybrid zone
Caption and photo credit: The two chickadee species overlap in a narrow band across the eastern United States. This band has moved northward by 7 miles in the last decade. Image courtesy Cornell Lab of Ornithology.
Download link:
http://www.allaboutbirds.org/bbimages/CLO/images/News_Releases/chickadee_hybrid_map.jpg

Video, 2 minutes: Basic info about chickadees and research finding, voiceover by Dr. Scott Taylor
Available as a YouTube embed: Please contact Pat Leonard (above) for access to the video.

The Cornell Lab of Ornithology is a membership institution dedicated to interpreting and conserving the earth’s biological diversity through research, education, and citizen science focused on birds. Visit the Cornell Lab’s website at http://www.birds.cornell.edu.

About Villanova University: Since 1842, Villanova University’s Augustinian Catholic intellectual tradition has been the cornerstone of an academic community in which students learn to think critically, act compassionately and succeed while serving others. There are more than 10,000 undergraduate, graduate and law students in the University's five colleges – the College of Liberal Arts and Sciences, the Villanova School of Business, the College of Engineering, the College of Nursing and the Villanova University School of Law. As students grow intellectually, Villanova prepares them to become ethical leaders who create positive change everywhere life takes them.

View a formatted version of this press release at http://us2.campaign-archive1.com/?u=b35ddb671faf4a16c0ce32406&id=33aa79ce48&e=

Kiera Daly | newswise

Further reports about: Ornithology chickadees observations species temperature temperatures

More articles from Ecology, The Environment and Conservation:

nachricht Analytical lamps monitor air pollution in cities
26.05.2015 | Heraeus Noblelight GmbH

nachricht Nordic forests under pressure
26.05.2015 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>