Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warming climate threatens California fruit and nut production

23.07.2009
Winter chill, a vital climatic trigger for many tree crops, is likely to decrease by more than 50 percent during this century as global climate warms, making California no longer suitable for growing many fruit and nut crops, according to a team of researchers from the University of California, Davis, and the University of Washington.

In some parts of California's agriculturally rich Central Valley, winter chill has already declined by nearly 30 percent, the researchers found.

"Depending on the pace of winter chill decline, the consequences for California's fruit and nut industries could be devastating," said Minghua Zhang, a professor of environmental and resource science at UC Davis.

Also collaborating on the study were Eike Luedeling, a postdoctoral fellow in UC Davis' Department of Plant Sciences and UC Davis graduate Evan H. Girvetz, who is now a postdoctoral research associate at the University of Washington, Seattle. Their study will appear July 22 in the online journal PLoS ONE.

The study is the first to map winter chill projections for all of California, which is home to nearly 3 million acres of fruit and nut trees that require chilling. The combined production value of these crops was $7.8 billion in 2007, according to the California Department of Food and Agriculture.

"Our findings suggest that California's fruit and nut industry will need to develop new tree cultivars with reduced chilling requirements and new management strategies for breaking dormancy in years of insufficient winter chill," Luedeling said.

About winter chill

Most fruit and nut trees from nontropical locations avoid cold injury in the winter by losing their leaves in the fall and entering a dormant state that lasts through late fall and winter.

In order to break dormancy and resume growth, the trees must receive a certain amount of winter chill, traditionally expressed as the number of winter chilling hours between 32 and 45 degrees Fahrenheit. Each species or cultivar is assumed to have a specific chilling requirement, which needs to be fulfilled every winter.

Insufficient winter chill plays havoc with flowering time, which is particularly critical for trees such as walnuts and pistachios that depend on male and female flowering occurring at the same time to ensure pollination and a normal yield.

Planning for a warmer future

Fruit and nut growers commonly use established mathematical models to select tree varieties whose winter chill requirements match conditions of their local area. However, those mathematical models were calibrated based on past temperature conditions, and establishing chilling requirements may not remain valid in the future, the researchers say. Growers will need to include likely future changes in winter chill in their management decisions.

"Since orchards often remain in production for decades, it is important that growers now consider whether there will be sufficient winter chill in the future to support the same tree varieties throughout their producing lifetime," Zhang said.

To provide accurate projections of winter chill, the researchers used hourly and daily temperature records from 1950 and 2000, as well as 18 climate scenarios projected for later in the 21st century.

They introduced the concept of "safe winter chill," the amount of chilling that can be safely expected in 90 percent of all years. They calculated the amount of safe winter chill for each scenario and also quantified the change in area of a safe winter chill for certain crop species.

New findings

The researchers found that in all projected scenarios, the winter chill in California declined substantially over time. Their analysis in the Central Valley, where most of the state's fruit and nut production is located, found that between 1950 and 2000, winter chill had already declined by up to 30 percent in some regions.

Using data from climate models developed for the Intergovernmental Panel on Climate Change Fourth Assessment Report (2007), the researchers projected that winter chill will have declined from the 1950 baseline by as much as 60 percent by the middle of this century and by up to 80 percent by the end of the century.

Their findings indicate that by the year 2000, winter chill had already declined to the point that only 4 percent of the Central Valley was still suitable for growing apples, cherries and pears — all of which have high demand for winter chill.

The researchers project that by the end of the 21st century, the Central Valley might no longer be suitable for growing walnuts, pistachios, peaches, apricots, plums and cherries.

"The effects will be felt by growers of many crops, especially those who specialize in producing high-chill species and varieties," Luedeling said. "We expect almost all tree crops to be affected by these changes, with almonds and pomegranates likely to be impacted the least because they have low winter chill requirements."

Developing alternatives

The research team noted that growers may be able change some orchard management practices involving planting density, pruning and irrigation to alleviate the decline in winter chill. Another option would be transitioning to different tree species or varieties that do not demand as much winter chill.

There are also agricultural chemicals that can be used to partially make up for the lack of sufficient chilling in many crops, such as cherries. A better understanding of the physiological and genetic basis of plant dormancy, which is still relatively poorly understood, might point to additional strategies to manage tree dormancy, which will help growers cope with the agro-climatic challenges that lie ahead, the researchers suggested.

Funding for this study was provided by the California Department of Food and Agriculture and The Nature Conservancy.

About UC Davis

For 100 years, UC Davis has engaged in teaching, research and public service that matter to California and transform the world. Located close to the state capital, UC Davis has 31,000 students, an annual research budget that exceeds $500 million, a comprehensive health system and 13 specialized research centers. The university offers interdisciplinary graduate study and more than 100 undergraduate majors in four colleges — Agricultural and Environmental Sciences, Biological Sciences, Engineering, and Letters and Science — and advanced degrees from six professional schools — Education, Law, Management, Medicine, Veterinary Medicine and the Betty Irene Moore School of Nursing.

Media contact(s):

* Minghua Zhang, Land, Air and Water Resources, (530) 752-4953, mhzhang@ucdavis.edu
* Eike Luedeling, Plant Sciences, (530) 574-3794, eluedeling@ucdavis.edu
* Pat Bailey, UC Davis News Service, (530) 752-9843, pjbailey@ucdavis.edu

Patricia Bailey | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>