Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Warming climate threatens California fruit and nut production

Winter chill, a vital climatic trigger for many tree crops, is likely to decrease by more than 50 percent during this century as global climate warms, making California no longer suitable for growing many fruit and nut crops, according to a team of researchers from the University of California, Davis, and the University of Washington.

In some parts of California's agriculturally rich Central Valley, winter chill has already declined by nearly 30 percent, the researchers found.

"Depending on the pace of winter chill decline, the consequences for California's fruit and nut industries could be devastating," said Minghua Zhang, a professor of environmental and resource science at UC Davis.

Also collaborating on the study were Eike Luedeling, a postdoctoral fellow in UC Davis' Department of Plant Sciences and UC Davis graduate Evan H. Girvetz, who is now a postdoctoral research associate at the University of Washington, Seattle. Their study will appear July 22 in the online journal PLoS ONE.

The study is the first to map winter chill projections for all of California, which is home to nearly 3 million acres of fruit and nut trees that require chilling. The combined production value of these crops was $7.8 billion in 2007, according to the California Department of Food and Agriculture.

"Our findings suggest that California's fruit and nut industry will need to develop new tree cultivars with reduced chilling requirements and new management strategies for breaking dormancy in years of insufficient winter chill," Luedeling said.

About winter chill

Most fruit and nut trees from nontropical locations avoid cold injury in the winter by losing their leaves in the fall and entering a dormant state that lasts through late fall and winter.

In order to break dormancy and resume growth, the trees must receive a certain amount of winter chill, traditionally expressed as the number of winter chilling hours between 32 and 45 degrees Fahrenheit. Each species or cultivar is assumed to have a specific chilling requirement, which needs to be fulfilled every winter.

Insufficient winter chill plays havoc with flowering time, which is particularly critical for trees such as walnuts and pistachios that depend on male and female flowering occurring at the same time to ensure pollination and a normal yield.

Planning for a warmer future

Fruit and nut growers commonly use established mathematical models to select tree varieties whose winter chill requirements match conditions of their local area. However, those mathematical models were calibrated based on past temperature conditions, and establishing chilling requirements may not remain valid in the future, the researchers say. Growers will need to include likely future changes in winter chill in their management decisions.

"Since orchards often remain in production for decades, it is important that growers now consider whether there will be sufficient winter chill in the future to support the same tree varieties throughout their producing lifetime," Zhang said.

To provide accurate projections of winter chill, the researchers used hourly and daily temperature records from 1950 and 2000, as well as 18 climate scenarios projected for later in the 21st century.

They introduced the concept of "safe winter chill," the amount of chilling that can be safely expected in 90 percent of all years. They calculated the amount of safe winter chill for each scenario and also quantified the change in area of a safe winter chill for certain crop species.

New findings

The researchers found that in all projected scenarios, the winter chill in California declined substantially over time. Their analysis in the Central Valley, where most of the state's fruit and nut production is located, found that between 1950 and 2000, winter chill had already declined by up to 30 percent in some regions.

Using data from climate models developed for the Intergovernmental Panel on Climate Change Fourth Assessment Report (2007), the researchers projected that winter chill will have declined from the 1950 baseline by as much as 60 percent by the middle of this century and by up to 80 percent by the end of the century.

Their findings indicate that by the year 2000, winter chill had already declined to the point that only 4 percent of the Central Valley was still suitable for growing apples, cherries and pears — all of which have high demand for winter chill.

The researchers project that by the end of the 21st century, the Central Valley might no longer be suitable for growing walnuts, pistachios, peaches, apricots, plums and cherries.

"The effects will be felt by growers of many crops, especially those who specialize in producing high-chill species and varieties," Luedeling said. "We expect almost all tree crops to be affected by these changes, with almonds and pomegranates likely to be impacted the least because they have low winter chill requirements."

Developing alternatives

The research team noted that growers may be able change some orchard management practices involving planting density, pruning and irrigation to alleviate the decline in winter chill. Another option would be transitioning to different tree species or varieties that do not demand as much winter chill.

There are also agricultural chemicals that can be used to partially make up for the lack of sufficient chilling in many crops, such as cherries. A better understanding of the physiological and genetic basis of plant dormancy, which is still relatively poorly understood, might point to additional strategies to manage tree dormancy, which will help growers cope with the agro-climatic challenges that lie ahead, the researchers suggested.

Funding for this study was provided by the California Department of Food and Agriculture and The Nature Conservancy.

About UC Davis

For 100 years, UC Davis has engaged in teaching, research and public service that matter to California and transform the world. Located close to the state capital, UC Davis has 31,000 students, an annual research budget that exceeds $500 million, a comprehensive health system and 13 specialized research centers. The university offers interdisciplinary graduate study and more than 100 undergraduate majors in four colleges — Agricultural and Environmental Sciences, Biological Sciences, Engineering, and Letters and Science — and advanced degrees from six professional schools — Education, Law, Management, Medicine, Veterinary Medicine and the Betty Irene Moore School of Nursing.

Media contact(s):

* Minghua Zhang, Land, Air and Water Resources, (530) 752-4953,
* Eike Luedeling, Plant Sciences, (530) 574-3794,
* Pat Bailey, UC Davis News Service, (530) 752-9843,

Patricia Bailey | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>