Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warming climate pushes plants up the mountain

15.08.2013
Comparing plant communities today with a survey taken 50 years ago, University of Arizona-led research provides the first on-the-ground evidence for Southwestern plants being pushed to higher elevations by an increasingly warmer and drier climate

In a rare opportunity to directly compare plant communities in the same area now with a survey taken 50 years ago, a University of Arizona-led research team has provided the first on-the-ground evidence that Southwestern plants are being pushed to higher elevations by an increasingly warmer and drier climate.


The researchers assessed plants growing at different elevations in the same areas surveyed by botanists 50 years ago.

Credit: Jeffrey Eble

The findings confirm that previous hypotheses are correct in their prediction that mountain communities in the Southwest will be strongly impacted by an increasingly warmer and drier climate, and that the area is already experiencing rapid vegetation change.

In a rare opportunity to obtian a "before – after" look, researchers studied current plant communities along the same transect already surveyed in 1963: the Catalina Highway, a road that winds all the way from low-lying desert to the top of Mount Lemmon, the tallest peak in the Santa Catalina Mountains northeast of Tucson.

"Our study provides the first on-the-ground proof of plants being forced significantly upslope due to climate warming in southern Arizona," said Richard C. Brusca, a research scientist in the UA's department of ecology and evolutionary biology who led the study together with Wendy Moore, an assistant professor in the UA's department of entomology. "If climate continues to warm, as the climate models predict, the subalpine mixed conifer forests on the tops of the mountains – and the animals dependent upon them – could be pushed right off the top and disappear."

The study, published in the journal Ecology and Evolution, was made possible by the existence of a dataset compiled 50 years ago by Robert H. Whittaker, often referred to as the "father of modern plant ecology," and his colleague, William Niering, who catalogued the plants they encountered along the Catalina Highway.

Focusing on the 27 most abundantly catalogued plant species, Brusca and Moore discovered that three quarters of them have shifted their range significantly upslope, in some cases as much as a thousand feet, or now grow in a narrower elevation range compared to where Whittaker and Niering found them in 1963.

Specifically, Moore and her team found that the lowermost boundaries for 15 of the species studied have moved upslope; eight of those species now first appear more than 800 feet higher than where Whittaker and Niering first encountered them. Sixteen of the studied species are now restricted to a narrower band of elevation, the researchers noticed. As far as the plants' upper elevation limits were concerned, the researchers observed a mixed trend: They found it to be higher for four species, lower for eight species and unchanged for 15.

For example, in 1963 Whittaker and Niering recorded alligator juniper as a component of upland desert and grassland communities in the Catalina Mountains, beginning at an elevation of just 3,500 feet. Today, one has to drive to the 5,000-foot elevation marker on the Catalina Highway to see the first live alligator juniper trees in upland habitats.

According to the authors, the main point emerging from the study is that plant communities on the mountain were different 50 years ago because plant species do not necessarily move toward higher elevations as a community. Rather, individual species shift their ranges independently, leading to a reshuffling of plant communities.

The scientists in this multidisciplinary group gathered the data during fieldwork in 2011, and included UA postdoctoral fellows and professors from several programs, including the UA departments of entomology and ecology and evolutionary biology, the Center for Insect Science and the Institute for the Environment, as well as botanists from the Arizona-Sonora Desert Museum.

Based on studies done by other scientists, including UA researchers, the researchers believe that a "thirstier" atmosphere might be a major driver behind the shifts in plant distribution, possibly even more so than lack of precipitation. As the atmosphere becomes warmer and drier, plants loose more water through their leave openings and become water-stressed.

According to the authors, the results are consistent with a trend scientists have established for the end of the Pleistocene, a period of repeated glaciations that ended about 12,000 years ago. By studying the distribution of plant seeds and parts preserved in ancient packrat middens, for example, paleo-ecologists have documented that as the climate warmed up, plant communities changed profoundly.

"In southern Arizona, some species moved north to the Colorado Plateau, others moved up mountain slopes, and others didn't move at all," said Moore, who has been collecting data on ground-dwelling arthropods, plants, leaf litter, weather, soil, and other ecological factors in the Santa Catalina Mountains for the Arizona Sky Island Arthropod Project based in her lab.

The Sky Islands encompass an "archipelago" of 65 isolated mountain ranges rising from the surrounding low-elevation desert and desert grassland in an area that constitutes the only major gap in the 4,500-mile long North American Cordillera, which runs from northern Alaska to southern Mexico. The Sky Islands, often referred to as the "Madrean Sky Islands," span this gap in southeastern Arizona, southwestern New Mexico and northeastern Sonora, Mexico. They include the Santa Catalina Mountains, the Pinal Mountains and the Chiricahua Mountains.

Research publication: http://onlinelibrary.wiley.com/doi/10.1002/ece3.720/abstract

Daniel Stolte | University of Arizona
Further information:
http://www.arizona.edu

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>