Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warmer environment means shorter lives for cold-blooded animals

29.07.2009
Stony Brook University researchers show temperature explains much of the geographic variation in lifespan within species

Temperature explains much of why cold-blooded organisms such as fish, amphibians, crustaceans, and lizards live longer at higher latitudes than at lower latitudes, according to research published this week in the Proceedings of the National Academy of Sciences (PNAS) online.

Assistant Professor Dr. Stephan Munch and Ph.D. candidate Santiago Salinas, both of Stony Brook University's School of Marine and Atmospheric Sciences (SoMAS), found that for a diverse range of species whose body temperatures vary with the temperature of their surroundings, ambient temperature is the dominant factor controlling geographic variation of lifespan within species.

"We were intrigued by the fact that that pearl mussels in Spain have a maximum lifespan of 29 years, while in Russia, individuals of the same species live nearly 200 years," said Dr. Munch. "We wondered how a relatively small difference in latitude (Spain 43ºN and Russia 66ºN) could have such a drastic impact on lifespan. While one might expect that local adaptations or geographic variations in predator and food abundance would account for this disparity, we wanted to see whether the geographical variation in lifespan that we see in all sorts of species has a common physiological basis in temperature."

Munch and Salinas looked at lifespan data from laboratory and field observations for over 90 species from terrestrial, freshwater, and marine environments. They studied organisms with different average longevities--from the copepod Arcartia tonsa, which has an average lifespan of 11.6 days, to the pearl mussel Margaritifera margaritifera, which has an average lifespan of 74 years. They found that across this wide range of species, temperature was consistently exponentially related to lifespan.

The relationship between temperature and lifespan that Munch and Salinas found through data analysis was strikingly similar to the relationship that the metabolic theory of ecology (MTE) predicts. The MTE is a modeling framework that has been used to explain the way in which life history, population dynamics, geographic patterns, and other ecological processes scale with an animal's body size and temperature.

"You can think of an animal as a beaker in which chemical reactions are taking place," said Salinas. "The same rules that apply to a liquid inside a beaker should apply to animals. Chemists have a relationship for how an increase in temperature will speed up reaction rates, so the MTE borrows that relationship and applies it--with some obvious caveats--to living things."

The lifespan in 87% of the free-living species Munch and Salinas studied varied as predicted by the MTE. Yet after removing the effect of temperature, there was still considerable variation in lifespan within species, indicating that other, local factors still play a role in determining lifespan.

"It is interesting to consider how cold-blooded species are likely to react in the face of global warming," said Salinas. "Because of the exponential relationship between temperature and lifespan, small changes in temperature could result in relatively large changes in lifespan. We could see changes to ecosystem structure and stability if cold-blooded species change their life histories to accommodate warmer temperatures but warm-blooded species do not."

Leslie Taylor | EurekAlert!
Further information:
http://www.sunysb.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>