Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Venomous sea snakes play heads or tails with their predators

07.08.2009
In a deadly game of heads or tails venomous sea snakes in the Pacific and Indian Oceans deceive their predators into believing they have two heads, claims research published today in Marine Ecology.

The discovery, made by Dr Arne Redsted Rasmussen and Dr Johan Elmberg, showed that Yellow-lipped Sea Kraits (Laticauda colubrina) use skin markings and behaviour patterns to fool predators into thinking their tail is a second head, complete with lethal venom.

There are over 65 species of sea snakes in the tropical waters of the Southern Hemisphere, ranging from Africa to the Gulf of Panama. Most spend their entire lives in the sea, inhabiting shallow water and are active predators, feeding on small fish found around coral reefs. All sea snakes have extremely potent venom which is among the most toxic known in all snake species.

When hunting for food sea snakes probe crevices and coral formations, temporarily forcing them to drop their guard to threats from the surrounding waters and making them highly vulnerable to attack. However, the Yellow-lipped Sea Krait has been found to twist its tail so that the tip corresponds with the dorsal view of the head, which combined with deceptive colouring, gives the illusion of having two heads and two loads of deadly venom.

Apart from the Yellow-lipped Sea Krait the ecology of sea snakes has largely gone understudied, due mainly to their off-shore and nocturnal behaviour. Yet, despite the number of behavioural studies devoted to this species, the discovery of this false-head-behaviour is a hitherto overlooked anti-predator adaptation.

The discovery was made while senior author Arne Redsted Rasmussen was diving off the coast of the Bunaken Island in Indonesia. A large Krait was followed for thirty minutes, swimming between corals and crevices hunting for food. Rasmussen was momentarily distracted by a second snake, but when looking back he was surprised to see the "head" was facing him while the tail probed the coral. Rasmussen's surprise grew when he saw a second head emerge from the coral instead of the expected tail. It was only when the snake swam away that the first head was clearly seen to be a paddling tail.

To build upon this discovery researchers examined 98 Sea Kraits from three major museum collections in Paris, Berlin and Copenhagen while also monitoring the behaviour of wild Sea Kraits in Solomon Islands during the Danish Galathea 3 Expedition. The research confirmed that all snakes of this species had a distinctive colouration pattern, with a bright yellow horseshoe marking on the tip of the head and the tail. The yellow was deeper than the colours on the rest of the body and the black colorations were much longer than the dark bands on the rest of the body, highlighting the similarity between the head and the tail.

The reason for this mixture of behaviour and coloration results from a developed defence strategy needed when the snake is probing for prey. Despite being extremely venomous sea snakes are susceptible to attack from several predators such as sharks, large bony fishes, and even birds.

"The value of such an adaptation is twofold; it may increase the chances of surviving predator attack by exposing a less 'vital' body part, but more importantly it may deter attack in the first place if attackers perceive the tail as the venomous snakes head," said Rasmussen.

Similar defence mechanisms have been discovered in lizards, and some land snakes have developed ingenious camouflage deterrent behaviour strategies, but this defence has never been associated with other lethally venomous predators such as sea snakes.

Traditionally the only evidence of a defence behaviour strategy in sea snakes has been documented in individual cases, when a snake was exposed to and aware of an imminent danger. This research is the first record of a combined false-head-behaviour and false-head-camouflage defence strategy used as instinct when a snake is hunting for food.

"It is intriguing that this discovery is observed in this species, as one of the key differences between the Yellow-lipped Sea Krait and other sea snakes is that they spend almost equal time on land and in the sea," said Rasmussen. "They therefore live in two worlds where two very different rules of survival apply. It remains to be confirmed whether Sea kraits use their sea defence tactic of motioning their tails when on land."

Ben Norman | EurekAlert!
Further information:
http://www.wiley.com

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>