Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using more wood for construction can slash global reliance on fossil fuels

01.04.2014

A Yale University-led study has found that using more wood and less steel and concrete in building and bridge construction would substantially reduce global carbon dioxide emissions and fossil fuel consumption.

Despite an established forest conservation theory holding that tree harvesting should be strictly minimized to prevent the loss of biodiversity and to maintain carbon storage capacity, the new study shows that sustainable management of wood resources can achieve both goals while also reducing fossil fuel burning. The results were published March 28 in the Journal of Sustainable Forestry.


In Vancouver, architect Michael Green has proposed a 30-story wooden skyscraper, called "Tall Wood." (Image via MG Architecture)

In the comprehensive study, scientists from the Yale School of Forestry & Environmental Studies (F&ES) and the University of Washington’s College of the Environment evaluated a range of scenarios, including leaving forests untouched, burning wood for energy, and using various solid wood products for construction.

The researchers calculated that the amount of wood harvested globally each year (3.4 billion cubic meters) is equivalent to only about 20 percent of annual wood growth (17 billion cubic meters), and much of that harvest is burned inefficiently for cooking. They found that increasing the wood harvest to the equivalent of 34% or more of annual wood growth would have profound and positive effects:

•    Between 14% and 31%  of global CO2 emissions could be avoided by preventing emissions related to steel and concrete; by storing CO2 in the cellulose and lignin of wood products; and other factors.

•    About 12% to 19% of annual global fossil fuel consumption would be saved including savings achieved because scrap wood and unsellable materials could be burned for energy, replacing fossil fuel consumption.

Wood-based construction consumes much less energy than concrete or steel construction. Through efficient harvesting and product use, more CO2 is saved through the avoided emissions, materials, and wood energy than is lost from the harvested forest.

“This study shows still another reason to appreciate forests — and another reason to not let them be permanently cleared for agriculture,” said Chadwick Oliver, the Pinchot Professor of Forestry and Environmental Studies, director of the Global Institute of Sustainable Forestry at F&ES and lead author of the new study. “Forest harvest creates a temporary opening that is needed by forest species such as butterflies and some birds and deer before it regrows to large trees. But conversion to agriculture is a permanent loss of all forest biodiversity.”

The manufacture of steel, concrete, and brick accounts for about 16 percent of global fossil fuel consumption. When the transport and assembly of steel, concrete, and brick products is considered, its share of fossil fuel burning is closer to 20% to 30%, Oliver said.

Reductions in fossil fuel consumption and carbon emissions from construction will become increasingly critical as demand for new buildings, bridges and other infrastructure is expected to surge worldwide in the coming decades with economic development in Asia, Africa, and South America, according to a previous F&ES study. And innovative construction techniques are now making wood even more effective in bridges and mid-rise apartment buildings.

According to Oliver, carefully managed harvesting also reduces the likelihood of catastrophic wildfires. 

And maintaining a mix of forest habitats and densities in non-reserved forests — in addition to keeping some global forests in reserves — would help preserve biodiversity in ecosystems worldwide, Oliver said. About 12.5% of the world’s forests are currently located in reserves.

“Forests historically have had a diversity of habitats that different species need,” Oliver said. “This diversity can be maintained by harvesting some of the forest growth. And the harvested wood will save fossil fuel and CO2 and provide jobs — giving local people more reason to keep the forests.”

The article, “Carbon, Fossil Fuel, and Biodiversity Mitigation with Woods and Forests,” was co-authored by Nedal T. Nassar of the Yale School of Forestry & Environmental Studies and Bruce R. Lippke and James B. McCarter of the University of Washington.

Kevin Dennehy | EurekAlert!
Further information:
http://news.yale.edu/2014/03/31/using-more-wood-construction-can-slash-global-reliance-fossil-fuels

Further reports about: CO2 Carbon Environment Environmental Fossil Mitigation agriculture construction forests fuels species

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Single-photon detector can count to 4

18.12.2017 | Information Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms

18.12.2017 | Physics and Astronomy

How much soil goes down the drain -- New data on soil lost due to water

18.12.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>