Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Nevada, Reno invents next-gen device to track world's air quality

30.03.2011
New device licensed for commercial development through technology transfer office

A new air-quality measuring instrument invented by Pat Arnott and Ian Arnold of the University of Nevada, Reno that is more economical, more portable and more accurate than older technologies has been licensed for commercial development by Droplet Measurement Technologies of Boulder, Colo.

Arnott, a physics professor in the University's College of Science, had perhaps lugged his heavy pieces of equipment one too many times through airports to faraway places to examine airborne particles. Now, his and Arnold's latest invention has reduced the laser-equipped air-monitoring equipment to suitcase size, while enhancing its measurement capabilities.

This latest, compact version of the photoacoustic particle measuring machine with its lasers, mirrors, flexible tubes, wires and relays is also cheaper and faster and should be an attractive alternative for users.

"This machine will be much more ubiquitous for measuring air quality, or more precisely, black carbon in the air, or a number of other uses," Arnott said. "Key component cost and instrument weight have dropped from $2,000 and 180 pounds to $40 and 20 pounds. This will make it more accessible to researchers, businesses and government agencies; and much easier when traveling around the world to gather data."

Over the past 12 years, Arnott, along with collaborators from the Desert Research Institute, have mapped air pollution on Los Angeles freeways, as well as in Mexico City, the rain forests of Brazil, Vancouver, B.C., and Big Bend National Park, to name a few locations. They have also worked 1,600 feet underground in an active Nevada gold mine to monitor air quality.

Arnott's invention is an improvement on earlier technology he developed with partners. Arnott, John Walker and Hans Moosmüller, all at the time with DRI, commercialized the first version of the instrument with Droplet Measurement Technologies in 2005.

The University of Nevada, Reno's Tech Transfer Office, worked out the deal with DMT to commercialize the technology.

"The new device is a smaller, less expensive photoacoustic instrument for measuring airborne particles related to air quality that makes it affordable for a broader range of uses and it promises to lead to much wider market adoption of photoacoustic technology," said Ryan Heck, director of the University's Tech Transfer Office. "Pat and DMT have worked together for years, and we were pleased to help facilitate a new product based on their collaboration."

Arnott and DMT have already built beta-versions of the device that are in use by researchers at the Lawrence Berkeley Labs and the Bay Area Air Quality District, at the Max Planck Institute for Chemistry in Europe and in locations in Mexico City. Droplet is working to produce many more that will be a fraction of the cost to users.

"We're pleased to have entered into the licensing agreement," John Lovett, CEO of Droplet said. "Pat is a leading scientist in applying photo-acoustic technology to aerosols and has partnered with DMT on developing research-grade scientific instruments for air quality assessment.

"Our new instrument, the Photoacoustic Extinctiometer —PAX, is a next generation monitoring tool to help scientists and air quality engineers accurately assess the optical properties of aerosols that are relevant for climate change and visibility. By measuring the aerosol in its natural state (photoacoustically), without requiring filter collection, the PAX improves measurement accuracy over older competing technologies."

Arnott and Arnold, an undergraduate student in Physics at the University when he assisted Arnott with instrument development, are also working on developing a truly miniature device that may find use as an on-board sensor for real-time black carbon air pollution emission control.

The University of Nevada, Reno's Tech Transfer Office develops license agreements with business and industry for technologies produced and patented at the University. They have more than 30 technologies available for licensing in a variety of commercialization categories including renewable energy, life sciences, physical sciences, environmental sciences and the medical field.

Nevada's land-grant university founded in 1874, the University of Nevada, Reno has an enrollment of more than 17,000 students. The University is home to the state's medical school and one of the country's largest study-abroad programs, and offers outreach and education programs in all Nevada counties. For more information, visit www.unr.edu. The University of Nevada, Reno is part of the Nevada System of Higher Education.

Mike Wolterbeek | EurekAlert!
Further information:
http://www.unr.edu

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>