Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Hawaii at Manoa oceanographers examine mercury levels of pelagic fish in Hawaii

01.09.2009
Mercury levels influenced by depth of open ocean fishes and their prey

In the open ocean, species of large predatory fish will swim and hunt for food at various depths, which leads to unique diets in these fish.

Oceanographers and geologists in the School of Ocean and Earth Science and Technology (SOEST) at the University of Hawaiʻi at Mânoa (UHM) and colleagues have found that those fish that hunt deeper in the open ocean have higher mercury concentrations than those that feed near the surface of the ocean because their deep water food has higher mercury. This research was detailed in the August 18th early edition of the prestigous journal the Proceedings of the National Academy of Sciences.

Mercury is a naturally-occurring trace element distributed throughout the Earth's oceans, land and air. The general public is interested in mercury levels in fish because the organic form, methylmercury, can be toxic at elevated levels if ingested by humans and animals.Mercury enters open ocean food webs, where it bioaccumulates, leading to higher levels in large predatory animals.

Researchers looking at mercury levels in the open ocean have indicated that deeper waters have elevated levels relative to the surface waters. "Bu! ilding o n this information, we thought that deeper-dwelling open ocean animals might have more mercury, as well as the predatory fishes that feed on them," says Anela Choy, a Department of Oceanography Graduate Student at UHM and lead author in this study. This was indeed the case, and the results of their work show that large pelagic fish like bigeye tuna and swordfish that feed deeper in the ocean have elevated total mercury levels relative to their shallower-dwelling counterparts like yellowfin tuna and mahi-mahi. "We show that this is because the food items that they eat also have varying levels of mercury", continues Choy. "Deeper-living micronekton prey (small fishes, squids, and crustaceans) have higher mercury levels relative to more surface-dwelling prey animals. This is important knowledge for scientists studying animals in the open ocean because it helps them to understand how energy and matter cycle, as well as show who is eating who in the vast, blue water environment. Although not the focus of this study, the results may also help provide information to the fish-consuming public on mercury levels in popular commercial species."

To study the mechanisms governing bioaccumulation in open ocean fish, the researchers, who also included Brian N. Popp and Jeffrey C. Drazen, also from UHM, and John Kaneko from the Honolulu company PacMar Inc, collected nine predatory pelagic fish species with different diets in waters surrounding Hawaiʻi, along with a representation of the types of prey these fishes eat. The predatory fish collected represented a wide variety of depths at which they search for food, varying from shallow-ranging predators (0 – 300 meters) to deep-ranging predators (up to 1000 meters). Total mercury levels of these fish were measured, along with an analysis of animals in their stomachs. The authors found that while the sex of a fish and the location where a fish was caught d! id not a ffect mercury concentrations, the size, age and species of fish did. However, for similar sized fish of different species, deeper-ranging predators still had more mercury than shallow-ranging ones. This study shows for the first time, that in addition to the size and age of a fish, or where it swims/lives, that the depth at which a fish feeds influences the amount of mercury it has in it's tissues.

"After looking more closely at these different mid-water prey organisms, a number of interesting questions have opened up," says Choy. "As these organisms are the primary food items for large pelagic fishes that humans like to eat, we need to understand more about how they fit into the open ocean ecosystem in order to sustainably manage our fish populations."

It is important to understand that ocean biology is connected across depths by the movements and hunting behaviors of animals. "The deep sea is remote, hard to study, and often ignored but our results clearly show how its biology is directly connected to human interests, both fishing and health," says Drazen. "Some of the fishes we enjoy at the dinner table grew on a diet of strange and exotic creatures from 1000s of feet deep in the ocean."

The original research was funded by University of Hawaiʻi Sea Grant College Program at UHM, the State of Hawaiʻi, JIMAR (Pelagic Fisheries Research Program (PFRP)), and the National Oceanographic and Atmospheric Administration. The need for a detailed study came after Popp attended a PFRP meeting on the UHM campus and he saw a data table from the State Department of Health of mercury concentrations in Hawaiian pelagic fishes that was published in the newspaper The Honolulu Advertiser. "The table was very crude showing only the average and range of mercury contents in each fish," says Popp." The fishes were listed from lowest m! ercury a t the top and highest mercury at the bottom -- it hit me that the order in the list roughly followed the depth the fish are typically caught in the ocean." Fortunately for Popp and Drazen, Choy, who had completed her undergraduate degree and was doing consulting work within the local seafood industry, and was also interested in this topic. Says Choy, "after interacting with the public, I found that many people were concerned with mercury levels in fish, and I eventually became interested in the oceanographic/ecological aspect of it."

The researchers have recently received funding from the Pelagic Fisheries Research Program, within the Joint Institute for Marine and Atmospheric Research (JIMAR) at UHM to continue using mercury, along with other chemical tracers to elucidate the structure and function of the open ocean food web in Hawaiian waters. Concludes Choy, "We hope this will provide crucial information for ecosystem-based fishery managers and ecosystem modelers."

Article Information: The influence of depth on mercury levels in pelagic fishes and their prey
C. Anela Choy, Brian N. Popp, J. John Kaneko, and Jeffrey C. Drazen
PNAS Early Edition – August 03 2009, PNAS August 18, 2009 vol. 106 no. 33 13865-13869

Article and images available upon request

Contact information
Anela Choy, Graduate Student, Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawaiʻi at Mânoa, cachoy@hawaii.edu (808) 956-9864

Jeff Drazen, Associate Professor, De! partment of Oceanography, School of Ocean and Earth Science and Technology, University of Hawaiʻi at Mânoa, jdrazen@hawaii.edu (808) 956-6567

Brian Popp, Professor, Department of Geology & Geophysics, School of Ocean and Earth Science and Technology, University of Hawaiʻi at Mânoa, popp@hawaii.edu (808) 956-6206

SOEST Media Contact: Tara Hicks Johnson, (808) 956-3151, hickst@hawaii.edu

Tara L. Hicks Johnson | EurekAlert!
Further information:
http://www.hawaii.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>