Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNH Scientists Document First Expansion of ‘Sea Potato’ Seaweed Into New England

05.04.2013
There’s a new seaweed in town, a brown, bulbous balloon befitting the nickname “sea potato.” Its New England debut was spotted by two University of New Hampshire plant biology graduate students; now researchers are keeping a close eye on the sea potato’s progress to determine whether there is cause for alarm.

UNH graduate students Lindsay Green and Hannah Traggis discovered the rapid southern expansion of Colpomenia peregrina, also known as sea potato or oyster thief, during a SCUBA diving trip in Kittery, Maine, in the summer of 2011. “We saw this big brown beach ball,” says Traggis, who co-authored a study of their findings in the journal Botanica Marina.

The seaweed was documented in Nova Scotia in the 1960s but never on the U.S. Atlantic coast until Green and Traggis’s diving trip in 2011. In the paper, the authors explain that when they reevaluated photographs sent from concerned individuals in mid-coastal Maine, they confirmed that the seaweed had appeared there in 2010. In the summer of 2012, the sea potato had spread as far south as Sandwich, Mass., on the north shore of Cape Cod.

“It’s just blown up,” says Green, a Ph.D. student from Piermont. “It’s expanded all the way to the Cape in just two years.” While C. peregrina prefers cooler waters, the researchers anticipate that it could extend its range farther south.

Ranging in size from just a few centimeters to the size of a soccer ball, the sea potato is a greenish to yellowish brown sac that fills with air or water. It is epiphytic – it grows on other plants – and it’s quickly become prominent in the rocky intertidal zone of the Gulf of Maine attached to common seaweeds like rockweed or Corallina officinalis, also known as coral weed.

Colpomenia peregrina looks strikingly similar to a native species, Leathesia marina, or sea cauliflower. Sea potato, however, is smoother, thinner and greenish-light brown while sea cauliflower tends to be smaller, stiffer, brain-like and dark brown; the researchers turned to microscopy and DNA analysis to make a definitive identification.

Traggis and Green are quick to characterize the sea potato as an introduced, not invasive, species in New England waters. Nonetheless, its rapid expansion into the Gulf of Maine raises concern. The seaweed earned its “oyster thief” nickname after its introduction to France in the early 1900s led to significant damage to the oyster industry.

“The seaweed was like a balloon attached to the oysters. Literally, whole oyster beds disappeared because they floated away,” says Traggis, a master’s student from Buzzards Bay, Mass. While no negative effects have been reported on New England’s shellfish industry, the researchers note that the region’s oyster industry is valued at $117.6 million.

The researchers and other scientists are keeping a close eye on C. peregrina for other ways it could alter the natural community and native flora. “It occurs in high density on many local seaweeds, and it’s competing with them for space, nutrients and light,” says Green. “In the summer it’s becoming a bit of a nuisance.”

As the warming days bring more people to New England’s shoreline, “we want people to know that this is here and that there are researchers interested in learning about it,” says Green, adding that while there’s no need for citizens to eradicate the sea potato if they find it, they shouldn’t move it around. They encourage beachcombers – the natural beach balls are likely to attract the curiosity of kids in particular – to contact the Department of Marine Resources (Maine: http://www.maine.gov/dmr/index.htm; New Hampshire: http://www.wildlife.state.nh.us/marine/; Massachusetts: http://www.mass.gov/dfwele/dmf/) when they find C. peregrina.

The paper, “Southern expansion of the brown alga Colpomenia peregrina Sauvageau (Scytosiphonales) in the Northwest Atlantic Ocean,” was published in the December 2012 issue of Botanica Marina. Green was lead author; in addition to Traggis, co-authors were UNH professors of plant biology Arthur Mathieson and Christopher Neefus, and Clinton Dawes of UNH’s Jackson Estuarine Laboratory and the University of South Florida. The project was supported by the NH Sea Grant College Program and received partial funding from the New Hampshire Agricultural Experiment Station at UNH.

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,200 undergraduate and 2,300 graduate students.

Photographs available to download:

http://www.unh.edu/news/releases/2013/apr/colpomenia2.jpg
Caption: University of New Hampshire graduate student Hannah Traggis holds Colpomenia peregrina found at Fort Stark in New Castle in April 2012

Credit: Hannah Traggis

http://www.unh.edu/news/releases/2013/apr/rockweed.png
“Sea potato” growing on rockweed on Allen Island, Maine
Credit: Lauren Stockwell
http://www.unh.edu/news/releases/2013/apr/colpomenia.jpg
This C. peregrina, or “sea potato,” collected from the Isles of Shoals in Maine and New Hampshire illustrates its size range

Credit: Lindsay Green

Beth Potier | EurekAlert!
Further information:
http://www.unh.edu

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>