Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNH Scientists Document First Expansion of ‘Sea Potato’ Seaweed Into New England

05.04.2013
There’s a new seaweed in town, a brown, bulbous balloon befitting the nickname “sea potato.” Its New England debut was spotted by two University of New Hampshire plant biology graduate students; now researchers are keeping a close eye on the sea potato’s progress to determine whether there is cause for alarm.

UNH graduate students Lindsay Green and Hannah Traggis discovered the rapid southern expansion of Colpomenia peregrina, also known as sea potato or oyster thief, during a SCUBA diving trip in Kittery, Maine, in the summer of 2011. “We saw this big brown beach ball,” says Traggis, who co-authored a study of their findings in the journal Botanica Marina.

The seaweed was documented in Nova Scotia in the 1960s but never on the U.S. Atlantic coast until Green and Traggis’s diving trip in 2011. In the paper, the authors explain that when they reevaluated photographs sent from concerned individuals in mid-coastal Maine, they confirmed that the seaweed had appeared there in 2010. In the summer of 2012, the sea potato had spread as far south as Sandwich, Mass., on the north shore of Cape Cod.

“It’s just blown up,” says Green, a Ph.D. student from Piermont. “It’s expanded all the way to the Cape in just two years.” While C. peregrina prefers cooler waters, the researchers anticipate that it could extend its range farther south.

Ranging in size from just a few centimeters to the size of a soccer ball, the sea potato is a greenish to yellowish brown sac that fills with air or water. It is epiphytic – it grows on other plants – and it’s quickly become prominent in the rocky intertidal zone of the Gulf of Maine attached to common seaweeds like rockweed or Corallina officinalis, also known as coral weed.

Colpomenia peregrina looks strikingly similar to a native species, Leathesia marina, or sea cauliflower. Sea potato, however, is smoother, thinner and greenish-light brown while sea cauliflower tends to be smaller, stiffer, brain-like and dark brown; the researchers turned to microscopy and DNA analysis to make a definitive identification.

Traggis and Green are quick to characterize the sea potato as an introduced, not invasive, species in New England waters. Nonetheless, its rapid expansion into the Gulf of Maine raises concern. The seaweed earned its “oyster thief” nickname after its introduction to France in the early 1900s led to significant damage to the oyster industry.

“The seaweed was like a balloon attached to the oysters. Literally, whole oyster beds disappeared because they floated away,” says Traggis, a master’s student from Buzzards Bay, Mass. While no negative effects have been reported on New England’s shellfish industry, the researchers note that the region’s oyster industry is valued at $117.6 million.

The researchers and other scientists are keeping a close eye on C. peregrina for other ways it could alter the natural community and native flora. “It occurs in high density on many local seaweeds, and it’s competing with them for space, nutrients and light,” says Green. “In the summer it’s becoming a bit of a nuisance.”

As the warming days bring more people to New England’s shoreline, “we want people to know that this is here and that there are researchers interested in learning about it,” says Green, adding that while there’s no need for citizens to eradicate the sea potato if they find it, they shouldn’t move it around. They encourage beachcombers – the natural beach balls are likely to attract the curiosity of kids in particular – to contact the Department of Marine Resources (Maine: http://www.maine.gov/dmr/index.htm; New Hampshire: http://www.wildlife.state.nh.us/marine/; Massachusetts: http://www.mass.gov/dfwele/dmf/) when they find C. peregrina.

The paper, “Southern expansion of the brown alga Colpomenia peregrina Sauvageau (Scytosiphonales) in the Northwest Atlantic Ocean,” was published in the December 2012 issue of Botanica Marina. Green was lead author; in addition to Traggis, co-authors were UNH professors of plant biology Arthur Mathieson and Christopher Neefus, and Clinton Dawes of UNH’s Jackson Estuarine Laboratory and the University of South Florida. The project was supported by the NH Sea Grant College Program and received partial funding from the New Hampshire Agricultural Experiment Station at UNH.

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,200 undergraduate and 2,300 graduate students.

Photographs available to download:

http://www.unh.edu/news/releases/2013/apr/colpomenia2.jpg
Caption: University of New Hampshire graduate student Hannah Traggis holds Colpomenia peregrina found at Fort Stark in New Castle in April 2012

Credit: Hannah Traggis

http://www.unh.edu/news/releases/2013/apr/rockweed.png
“Sea potato” growing on rockweed on Allen Island, Maine
Credit: Lauren Stockwell
http://www.unh.edu/news/releases/2013/apr/colpomenia.jpg
This C. peregrina, or “sea potato,” collected from the Isles of Shoals in Maine and New Hampshire illustrates its size range

Credit: Lindsay Green

Beth Potier | EurekAlert!
Further information:
http://www.unh.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>