Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unexpected New Mechanism Reveals How Molecules Become Trapped in Ice

30.09.2014

Discovery of “stable energetic embedding” of atoms and molecules within ice by University of Chicago and Loyola University researchers has wide-ranging environmental, scientific and defense implications

Ice is ubiquitous in nature—found within terrestrial and astrophysical environments alike—and contains many atoms and molecules trapped inside it. For example, ice beneath the world’s oceans hosts a vast reservoir of greenhouse gases, which if released would have a profound effect on climate change.


Grant Langlois, Wenxin Li/University of Chicago

This illustration shows energetic gas phase molecules interacting with an ice surface, including the channel by which high-velocity molecules directly embed beneath the surface.

On the earth’s surface, seasonal ice and permafrost-covered regions represent a vast reservoir for the collection, concentration and release of environmental and trace gases—encompassing national security concerns about the persistence and fate of intentionally released dangerous chemical species.

This makes expanding our knowledge of the way molecules interact with ice surfaces a key goal not only for climate change but also a much wider range of other environmental, scientific and defense-related issues.

Now, a team of University of Chicago and Loyola University researchers has discovered a new mechanism they call “stable energetic embedding” of atoms and molecules within ice. The work is described in The Journal of Chemical Physics, from AIP Publishing. It appears in a Special Topic Issue on Interfacial and Confined Water. (See: http://tinyurl.com/qcqrr22)

The newly discovered mechanism explains how some molecules—such as CF4, or "carbon tetrafluoride"—interact with and become embedded beneath ice surfaces. The new work also showed how molecules embedded into ice through this mechanism can be trapped and remain within the ice at temperatures well above the typical desorption temperature for surface-adsorbed species.

“The discovery of stable energetic embedding of atoms and molecules within ice was a very exciting moment in our laboratory,” said Steven J. Sibener, the Carl William Eisendrath Distinguished Service Professor in the Department of Chemistry and The James Franck Institute, as well as director of the University of Chicago’s Institute for Molecular Engineering Water Research Initiative. “We also clarified the depth of gas penetration into ice by showing that molecules remain in the subsurface region rather than diffusing freely throughout the ice at the temperatures examined.”

How exactly do you go about exploring stable embedding within ice? For starters, the team grows high purity ice films on a cryogenic substrate located within an ultrahigh vacuum environment. This allows them to precisely control film formation by varying the rate of water deposition at a variety of substrate temperatures.

“We grow two forms of ice: crystalline and amorphous solid water,” explained Sibener. “Amorphous ice can be induced to transform into its crystalline phase by raising the temperature to about 160 K. Once prepared, the ice surface is exposed to an energetic beam of atoms or molecules entrained in a supersonic beam.”

Supersonic beam methods can then be used to create a stream of essentially monoenergetic species that collide with the surface in a specified geometry. “Unusually well-defined collision kinematics allow us to probe and theoretically model how molecules become incorporated into the ice film, as well as to understand sticking probabilities and energy transfer by measuring the velocity and angular distributions of the reflected species,” he said. “We detect embedded molecules in two ways: post-dosing thermal desorption and highly sensitive in situ glancing angle infrared spectroscopy.”

The team’s work has significant implications for collisional energy and momentum transfer—in that molecules have another dynamical option in addition to the classic channels of scattering and rebounding directly or transiently residing on the surface until sufficient energy is transferred, leading to thermal accommodation. “Such refined knowledge is of both fundamental and technical importance, for example, as understanding the flight characteristics of high-performance aircraft,” Sibener said.

“Our work shows that such systems are far from static and that energetic embedding must be taken into account to develop more complete models of ice accretion and composition in space environments,” he added.

Next, Sibener and colleagues plan to explore related experiments with a focus on environmentally important gases and chemically reactive systems.

The article, "Molecular interactions with ice: Molecular embedding, adsorption, detection, and release," is authored by K.D. Gibson, Grant G. Langlois, Wenxin Li, Daniel R. Killelea, and S.J. Sibener. It appears in The Journal of Chemical Physics on September 30, 2014. After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/jcp/141/18/10.1063/1.4895970

ABOUT THE JOURNAL

The Journal of Chemical Physics publishes concise and definitive reports of significant research in the methods and applications of chemical physics. See: http://jcp.aip.org

Jason Socrates Bardi | newswise

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>