Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unexpected New Mechanism Reveals How Molecules Become Trapped in Ice

30.09.2014

Discovery of “stable energetic embedding” of atoms and molecules within ice by University of Chicago and Loyola University researchers has wide-ranging environmental, scientific and defense implications

Ice is ubiquitous in nature—found within terrestrial and astrophysical environments alike—and contains many atoms and molecules trapped inside it. For example, ice beneath the world’s oceans hosts a vast reservoir of greenhouse gases, which if released would have a profound effect on climate change.


Grant Langlois, Wenxin Li/University of Chicago

This illustration shows energetic gas phase molecules interacting with an ice surface, including the channel by which high-velocity molecules directly embed beneath the surface.

On the earth’s surface, seasonal ice and permafrost-covered regions represent a vast reservoir for the collection, concentration and release of environmental and trace gases—encompassing national security concerns about the persistence and fate of intentionally released dangerous chemical species.

This makes expanding our knowledge of the way molecules interact with ice surfaces a key goal not only for climate change but also a much wider range of other environmental, scientific and defense-related issues.

Now, a team of University of Chicago and Loyola University researchers has discovered a new mechanism they call “stable energetic embedding” of atoms and molecules within ice. The work is described in The Journal of Chemical Physics, from AIP Publishing. It appears in a Special Topic Issue on Interfacial and Confined Water. (See: http://tinyurl.com/qcqrr22)

The newly discovered mechanism explains how some molecules—such as CF4, or "carbon tetrafluoride"—interact with and become embedded beneath ice surfaces. The new work also showed how molecules embedded into ice through this mechanism can be trapped and remain within the ice at temperatures well above the typical desorption temperature for surface-adsorbed species.

“The discovery of stable energetic embedding of atoms and molecules within ice was a very exciting moment in our laboratory,” said Steven J. Sibener, the Carl William Eisendrath Distinguished Service Professor in the Department of Chemistry and The James Franck Institute, as well as director of the University of Chicago’s Institute for Molecular Engineering Water Research Initiative. “We also clarified the depth of gas penetration into ice by showing that molecules remain in the subsurface region rather than diffusing freely throughout the ice at the temperatures examined.”

How exactly do you go about exploring stable embedding within ice? For starters, the team grows high purity ice films on a cryogenic substrate located within an ultrahigh vacuum environment. This allows them to precisely control film formation by varying the rate of water deposition at a variety of substrate temperatures.

“We grow two forms of ice: crystalline and amorphous solid water,” explained Sibener. “Amorphous ice can be induced to transform into its crystalline phase by raising the temperature to about 160 K. Once prepared, the ice surface is exposed to an energetic beam of atoms or molecules entrained in a supersonic beam.”

Supersonic beam methods can then be used to create a stream of essentially monoenergetic species that collide with the surface in a specified geometry. “Unusually well-defined collision kinematics allow us to probe and theoretically model how molecules become incorporated into the ice film, as well as to understand sticking probabilities and energy transfer by measuring the velocity and angular distributions of the reflected species,” he said. “We detect embedded molecules in two ways: post-dosing thermal desorption and highly sensitive in situ glancing angle infrared spectroscopy.”

The team’s work has significant implications for collisional energy and momentum transfer—in that molecules have another dynamical option in addition to the classic channels of scattering and rebounding directly or transiently residing on the surface until sufficient energy is transferred, leading to thermal accommodation. “Such refined knowledge is of both fundamental and technical importance, for example, as understanding the flight characteristics of high-performance aircraft,” Sibener said.

“Our work shows that such systems are far from static and that energetic embedding must be taken into account to develop more complete models of ice accretion and composition in space environments,” he added.

Next, Sibener and colleagues plan to explore related experiments with a focus on environmentally important gases and chemically reactive systems.

The article, "Molecular interactions with ice: Molecular embedding, adsorption, detection, and release," is authored by K.D. Gibson, Grant G. Langlois, Wenxin Li, Daniel R. Killelea, and S.J. Sibener. It appears in The Journal of Chemical Physics on September 30, 2014. After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/jcp/141/18/10.1063/1.4895970

ABOUT THE JOURNAL

The Journal of Chemical Physics publishes concise and definitive reports of significant research in the methods and applications of chemical physics. See: http://jcp.aip.org

Jason Socrates Bardi | newswise

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>