Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMass Amherst Ecologists among the First to Record and Study Deep-sea Fish Noises

27.01.2012
University of Massachusetts Amherst fish biologists have published one of the first studies of deep-sea fish sounds in more than 50 years, collected from the sea floor about 2,237 feet (682 meters) below the North Atlantic.

With recording technology now more affordable, Rodney Rountree, Francis Juanes and colleagues are exploring the idea that many fish make sounds to communicate with each other, especially those that live in the perpetual dark of the deep ocean.

Though little is known at present about the significance of sounds made by deep-sea fishes, Rountree and Juanes say that if, as their pilot study suggests, these tend to be low-amplitude, then man-made noise in the oceans may turn out to be a particular problem for some important species.

Their paper appears in the new book, "Effects of Noise on Aquatic Life," from Springer Science+Business Media in its "Advances in Experimental Medicine and Biology" series. It compiles papers from an international workshop in Ireland in 2010.

Using hydrophones deployed by fishermen during normal fishing operations, Rountree, Juanes and colleagues obtained a 24-hour recording in Welkers Canyon south of Georges Bank that yielded "a wealth of biological sounds" including sounds of fin, humpback and pilot whales, dolphins and examples of at least 12 other unique and unidentified sounds they attribute to other whales or fish.

Their new paper includes graphics showing the number of these grunts, drumming and duck-like calls recorded per minute by time of day, plus peak volume and frequencies of various noises. Some of the sounds exhibited strong temporal patterns, for example fin whale and dolphin sounds dominated the recording and peaked at night.

Rountree, who makes a collection of fish sounds available on his popular website to engage and educate the public, explains, "We think work to describe underwater sounds is extremely valuable. The importance of sound in the ecology of both freshwater and marine systems is poorly understood. At this point, in fact, most of our work consists of making careful observations, which of course is the first step in the scientific process."

He adds, "If sound is important to these deep sea fishes, it’s a whole area of ecology we need to know about. One reason is that fishermen are exploring deeper and deeper water to make their catch, and we need to know such things as the baseline populations of food fish, their requirements for spawning, their essential habitat and other key aspects of their lives. We believe passive acoustic monitoring is an important tool in this study. And, it doesn’t harm the fish or their habitat."

Unlike active acoustic studies that bounce sound waves out and back, passive acoustic studies involve just listening. Rountree and Juanes have been promoting underwater passive acoustic studies for more than a decade. They hope to create a census of sounds and behavior observed concomitant with sounds from many different aquatic and marine habitats.

Juanes says some fish use special "sonic muscles" to produce some sounds, and different sounds have different meanings or functions. Many are believed to be related to reproductive behavior. Some fish use a "sound map" for orientation in their immediate environment and may even use sound waves returning from distant beaches to help them navigate over longer distances. "There is a fascinating acoustic soundscape out there just waiting to be explored."

Rountree adds, "It’s not only that some fish make sounds, but we think the overall soundscape is interesting and important." This study was supported by MIT Sea Grant.

In addition to their deep-sea recording project, the researchers are conducting pioneering passive acoustic surveys of sound in many different habitats, such as freshwater ponds, rivers and streams and coastal estuaries of New England, as well as on the commercial fishing grounds in the Gulf of Maine.

Rodney Rountree | EurekAlert!
Further information:
http://www.fishecology.org

More articles from Ecology, The Environment and Conservation:

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>