Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMass Amherst Ecologists among the First to Record and Study Deep-sea Fish Noises

27.01.2012
University of Massachusetts Amherst fish biologists have published one of the first studies of deep-sea fish sounds in more than 50 years, collected from the sea floor about 2,237 feet (682 meters) below the North Atlantic.

With recording technology now more affordable, Rodney Rountree, Francis Juanes and colleagues are exploring the idea that many fish make sounds to communicate with each other, especially those that live in the perpetual dark of the deep ocean.

Though little is known at present about the significance of sounds made by deep-sea fishes, Rountree and Juanes say that if, as their pilot study suggests, these tend to be low-amplitude, then man-made noise in the oceans may turn out to be a particular problem for some important species.

Their paper appears in the new book, "Effects of Noise on Aquatic Life," from Springer Science+Business Media in its "Advances in Experimental Medicine and Biology" series. It compiles papers from an international workshop in Ireland in 2010.

Using hydrophones deployed by fishermen during normal fishing operations, Rountree, Juanes and colleagues obtained a 24-hour recording in Welkers Canyon south of Georges Bank that yielded "a wealth of biological sounds" including sounds of fin, humpback and pilot whales, dolphins and examples of at least 12 other unique and unidentified sounds they attribute to other whales or fish.

Their new paper includes graphics showing the number of these grunts, drumming and duck-like calls recorded per minute by time of day, plus peak volume and frequencies of various noises. Some of the sounds exhibited strong temporal patterns, for example fin whale and dolphin sounds dominated the recording and peaked at night.

Rountree, who makes a collection of fish sounds available on his popular website to engage and educate the public, explains, "We think work to describe underwater sounds is extremely valuable. The importance of sound in the ecology of both freshwater and marine systems is poorly understood. At this point, in fact, most of our work consists of making careful observations, which of course is the first step in the scientific process."

He adds, "If sound is important to these deep sea fishes, it’s a whole area of ecology we need to know about. One reason is that fishermen are exploring deeper and deeper water to make their catch, and we need to know such things as the baseline populations of food fish, their requirements for spawning, their essential habitat and other key aspects of their lives. We believe passive acoustic monitoring is an important tool in this study. And, it doesn’t harm the fish or their habitat."

Unlike active acoustic studies that bounce sound waves out and back, passive acoustic studies involve just listening. Rountree and Juanes have been promoting underwater passive acoustic studies for more than a decade. They hope to create a census of sounds and behavior observed concomitant with sounds from many different aquatic and marine habitats.

Juanes says some fish use special "sonic muscles" to produce some sounds, and different sounds have different meanings or functions. Many are believed to be related to reproductive behavior. Some fish use a "sound map" for orientation in their immediate environment and may even use sound waves returning from distant beaches to help them navigate over longer distances. "There is a fascinating acoustic soundscape out there just waiting to be explored."

Rountree adds, "It’s not only that some fish make sounds, but we think the overall soundscape is interesting and important." This study was supported by MIT Sea Grant.

In addition to their deep-sea recording project, the researchers are conducting pioneering passive acoustic surveys of sound in many different habitats, such as freshwater ponds, rivers and streams and coastal estuaries of New England, as well as on the commercial fishing grounds in the Gulf of Maine.

Rodney Rountree | EurekAlert!
Further information:
http://www.fishecology.org

More articles from Ecology, The Environment and Conservation:

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>