Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMass Amherst Ecologists among the First to Record and Study Deep-sea Fish Noises

27.01.2012
University of Massachusetts Amherst fish biologists have published one of the first studies of deep-sea fish sounds in more than 50 years, collected from the sea floor about 2,237 feet (682 meters) below the North Atlantic.

With recording technology now more affordable, Rodney Rountree, Francis Juanes and colleagues are exploring the idea that many fish make sounds to communicate with each other, especially those that live in the perpetual dark of the deep ocean.

Though little is known at present about the significance of sounds made by deep-sea fishes, Rountree and Juanes say that if, as their pilot study suggests, these tend to be low-amplitude, then man-made noise in the oceans may turn out to be a particular problem for some important species.

Their paper appears in the new book, "Effects of Noise on Aquatic Life," from Springer Science+Business Media in its "Advances in Experimental Medicine and Biology" series. It compiles papers from an international workshop in Ireland in 2010.

Using hydrophones deployed by fishermen during normal fishing operations, Rountree, Juanes and colleagues obtained a 24-hour recording in Welkers Canyon south of Georges Bank that yielded "a wealth of biological sounds" including sounds of fin, humpback and pilot whales, dolphins and examples of at least 12 other unique and unidentified sounds they attribute to other whales or fish.

Their new paper includes graphics showing the number of these grunts, drumming and duck-like calls recorded per minute by time of day, plus peak volume and frequencies of various noises. Some of the sounds exhibited strong temporal patterns, for example fin whale and dolphin sounds dominated the recording and peaked at night.

Rountree, who makes a collection of fish sounds available on his popular website to engage and educate the public, explains, "We think work to describe underwater sounds is extremely valuable. The importance of sound in the ecology of both freshwater and marine systems is poorly understood. At this point, in fact, most of our work consists of making careful observations, which of course is the first step in the scientific process."

He adds, "If sound is important to these deep sea fishes, it’s a whole area of ecology we need to know about. One reason is that fishermen are exploring deeper and deeper water to make their catch, and we need to know such things as the baseline populations of food fish, their requirements for spawning, their essential habitat and other key aspects of their lives. We believe passive acoustic monitoring is an important tool in this study. And, it doesn’t harm the fish or their habitat."

Unlike active acoustic studies that bounce sound waves out and back, passive acoustic studies involve just listening. Rountree and Juanes have been promoting underwater passive acoustic studies for more than a decade. They hope to create a census of sounds and behavior observed concomitant with sounds from many different aquatic and marine habitats.

Juanes says some fish use special "sonic muscles" to produce some sounds, and different sounds have different meanings or functions. Many are believed to be related to reproductive behavior. Some fish use a "sound map" for orientation in their immediate environment and may even use sound waves returning from distant beaches to help them navigate over longer distances. "There is a fascinating acoustic soundscape out there just waiting to be explored."

Rountree adds, "It’s not only that some fish make sounds, but we think the overall soundscape is interesting and important." This study was supported by MIT Sea Grant.

In addition to their deep-sea recording project, the researchers are conducting pioneering passive acoustic surveys of sound in many different habitats, such as freshwater ponds, rivers and streams and coastal estuaries of New England, as well as on the commercial fishing grounds in the Gulf of Maine.

Rodney Rountree | EurekAlert!
Further information:
http://www.fishecology.org

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>