Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UM-led research team contributes to the management of South Florida coastal environments

21.07.2014

Collaborative research team publishes findings in special issue of Ecological Indicators

A Florida-based marine research team has developed a unique formal process and modeling framework to help manage South Florida's economically important coastal marine environments. The MARES project (Marine and Estuarine Goal Setting), led by the National Oceanic and Atmospheric Administration's (NOAA) Cooperative Institute for Marine and Atmospheric Studies (CIMAS) based at the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, successfully integrated both ecosystem science and societal benefits into a marine ecosystem support tool to help improve decision-making by natural resource managers.


This is a map of the South Florida coastal ecosystem studied during the MARES project.

Credit: Pamela Fletcher, Florida Sea Grant

The research team published their findings in 15 research papers in a special issue of the journal of Ecological Indicators - Volume 44, entitled: "Tools to support ecosystem based management of South Florida's coastal resources." The results have been incorporated into the revised Guidance Document for the National Marine Sanctuaries' Condition Reports and are being used by the Our Florida Reefs community working groups, the National Parks Service, NOAA's Integrated Ecosystem Assessment efforts, and in undergraduate courses at Florida universities and colleges.

"One of the important aspects of this new suite of tools, which includes conceptual info-graphics, integrated ecosystem models and both human and ecological indicators, is that it's exportable technology," said Peter Ortner, UM Rosenstiel Research Professor and Director of CIMAS. "It can be applied directly to the management of other coastal ecosystems."

A MARES program for coastal North Carolina is under consideration and a full-day workshop on MARES will be held at next December's "Linking Science, Practice and Decision Making" conference in Washington, DC. The NOAA/Climate Program Office has recently announced an award to CIMAS applying the MARES framework entitled "Developing decision support tools for understanding, communicating, and adapting to the impacts of climate on the sustainability of coastal ecosystem services."

South Florida has one of the most diverse ocean and coastal ecosystems in the United States, and is economically important to the local and state economy for tourism, commercial and recreational fishing, SCUBA diving, and other ocean-related jobs. The South Florida marine environment has degraded over the last century due to upstream and local human activity and coastal development. Sea-level rise and climate change are additional stressors that will put the long-term health of South Florida's valuable coastal resources at further risk over the coming century.

The study team, which included over 50 researchers from academia, state and federal government, was comprised of ecological scientists as well as "human dimension" scientists, such as economists, sociologists, and cultural anthropologists to evaluate the societal aspects of ecosystem management and protection. The coastal region studied included the waters from Martin County south to the Florida Keys and Dry Tortugas, the Southwest marine environment in the Gulf of Mexico from Lee County south to Florida Bay.

"Our large, collaborative team developed a conceptual modeling framework that explicitly focuses on the benefits humans receive from the ecosystem," said Ortner. "The framework includes ecological indicators as well as human dimensions indicators to assess the level of services human society is receiving and wishes to continue to receive from the ecosystem, such as recreational opportunity and economic gain."

The new conceptual framework allows natural resource managers to track how the ecological and human requirements are being satisfied and provides a flexible highly adaptive approach that allows for pubic involvement in the decision-making process. The MARES process is designed to reach a science-based consensus on the defining characteristics and fundamental regulatory processes of a coastal marine ecosystem that are both sustainable and capable of providing the diverse ecosystem services upon which our society depends. MARES was funded by the NOAA National Centers for Coastal Ocean Science

###

About the University of Miami's Rosenstiel School The University of Miami is one of the largest private research institutions in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit http://www.rsmas.miami.edu

Diana Udel | Eurek Alert!

Further reports about: Atmospheric CIMAS Miami NOAA ecological ecosystem environments natural resources

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>