Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UM-led research team contributes to the management of South Florida coastal environments

21.07.2014

Collaborative research team publishes findings in special issue of Ecological Indicators

A Florida-based marine research team has developed a unique formal process and modeling framework to help manage South Florida's economically important coastal marine environments. The MARES project (Marine and Estuarine Goal Setting), led by the National Oceanic and Atmospheric Administration's (NOAA) Cooperative Institute for Marine and Atmospheric Studies (CIMAS) based at the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, successfully integrated both ecosystem science and societal benefits into a marine ecosystem support tool to help improve decision-making by natural resource managers.


This is a map of the South Florida coastal ecosystem studied during the MARES project.

Credit: Pamela Fletcher, Florida Sea Grant

The research team published their findings in 15 research papers in a special issue of the journal of Ecological Indicators - Volume 44, entitled: "Tools to support ecosystem based management of South Florida's coastal resources." The results have been incorporated into the revised Guidance Document for the National Marine Sanctuaries' Condition Reports and are being used by the Our Florida Reefs community working groups, the National Parks Service, NOAA's Integrated Ecosystem Assessment efforts, and in undergraduate courses at Florida universities and colleges.

"One of the important aspects of this new suite of tools, which includes conceptual info-graphics, integrated ecosystem models and both human and ecological indicators, is that it's exportable technology," said Peter Ortner, UM Rosenstiel Research Professor and Director of CIMAS. "It can be applied directly to the management of other coastal ecosystems."

A MARES program for coastal North Carolina is under consideration and a full-day workshop on MARES will be held at next December's "Linking Science, Practice and Decision Making" conference in Washington, DC. The NOAA/Climate Program Office has recently announced an award to CIMAS applying the MARES framework entitled "Developing decision support tools for understanding, communicating, and adapting to the impacts of climate on the sustainability of coastal ecosystem services."

South Florida has one of the most diverse ocean and coastal ecosystems in the United States, and is economically important to the local and state economy for tourism, commercial and recreational fishing, SCUBA diving, and other ocean-related jobs. The South Florida marine environment has degraded over the last century due to upstream and local human activity and coastal development. Sea-level rise and climate change are additional stressors that will put the long-term health of South Florida's valuable coastal resources at further risk over the coming century.

The study team, which included over 50 researchers from academia, state and federal government, was comprised of ecological scientists as well as "human dimension" scientists, such as economists, sociologists, and cultural anthropologists to evaluate the societal aspects of ecosystem management and protection. The coastal region studied included the waters from Martin County south to the Florida Keys and Dry Tortugas, the Southwest marine environment in the Gulf of Mexico from Lee County south to Florida Bay.

"Our large, collaborative team developed a conceptual modeling framework that explicitly focuses on the benefits humans receive from the ecosystem," said Ortner. "The framework includes ecological indicators as well as human dimensions indicators to assess the level of services human society is receiving and wishes to continue to receive from the ecosystem, such as recreational opportunity and economic gain."

The new conceptual framework allows natural resource managers to track how the ecological and human requirements are being satisfied and provides a flexible highly adaptive approach that allows for pubic involvement in the decision-making process. The MARES process is designed to reach a science-based consensus on the defining characteristics and fundamental regulatory processes of a coastal marine ecosystem that are both sustainable and capable of providing the diverse ecosystem services upon which our society depends. MARES was funded by the NOAA National Centers for Coastal Ocean Science

###

About the University of Miami's Rosenstiel School The University of Miami is one of the largest private research institutions in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit http://www.rsmas.miami.edu

Diana Udel | Eurek Alert!

Further reports about: Atmospheric CIMAS Miami NOAA ecological ecosystem environments natural resources

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>