Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using Ultrasound to Control Toxic Algal Blooms

08.07.2010
University of Adelaide researchers are investigating the use of ultrasound as an environmentally friendly and cheaper alternative to controlling blue-green algae in our fresh water supplies.

In collaboration with water industry organisations including SA Water, the researchers are starting a three-year project to find the best process for using ultrasound in large volumes of water to combat this significant world-wide water quality problem.

Chief Investigator Dr Carl Howard, from the University’s School of Mechanical Engineering, says researchers will be testing different amplitudes and frequencies of ultrasound.

“We’ve already shown in laboratory tests that ultrasound is effective at neutralising blue-green algae,” says Dr Howard.

“We know it works but we don’t yet know the best frequencies, amplitudes and duration for the most effective, economic and efficient process.”

Blue-green algae (or cyanobacteria) can affect health and causes other water quality and environmental problems when it accumulates and forms ‘blooms’ in fresh water. It is currently controlled by the application of chemical treatments.

Dr Howard says ultrasound – at high amplitudes – is used for treating sewage and in other chemical processes but hasn’t been practical for fresh water treatment. Ultrasound at high amplitudes breaks down the cell walls of the blue-green algae, releasing toxins into the water.

“The novel part of our solution is that we will be using ultrasound at low amplitudes where it immobilises the blue-green algae without releasing its toxins into the water and with lower energy input,” Dr Howard says.

The researchers propose mounting ultrasound generators inside large underwater columns containing mixers which will draw the water through for treatment as it flows past.

The main industry partner, SA Water, has been working with University of Adelaide researchers over the past 15 years on a range of chemical and water circulation techniques in reservoirs and the River Murray to help tackle this problem.

The project has been granted $400,000 under the latest round of the Australian Research Council’s (ARC) Linkage Projects scheme.

“This project is an innovative and exciting development in this area of research which has the potential to provide many benefits to drinking water supplies both locally and nationally,” says SA Water Biology Research Leader Associate Professor Mike Burch.

Other industry partners are Melbourne Water Corporation, United Water International Pty Ltd, Water Corporation of WA and Water Quality Research Australia.

Media Contact:
Dr Carl Howard
Senior Lecturer
School of Mechanical Engineering
The University of Adelaide
Phone: +61 8 8303 3469
carl.howard@adelaide.edu.au

Dr Carl Howard | Newswise Science News
Further information:
http://www.adelaide.edu.au

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>