Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UI researchers find potentially toxic substance present in Chicago air

30.09.2008
Although the industrial compounds known as polychlorinated biphenols or PCBs have been found in previous air samples collected in the city of Chicago, a University of Iowa researcher says that a new study of Chicago air sampled between November 2006 and November 2007 found PCB11, a byproduct of the manufacture of paint pigments and a potentially toxic substance, present throughout the city.

"To the best of our knowledge, this is the first published report of PCB11 in ambient air," said Keri Hornbuckle, UI professor of civil and environmental engineering, in the Sept. 24 online issue of the journal Environmental Science & Technology. The journal can be found at http://pubs.acs.org/journals/esthag/.

"This compound is ubiquitous in air throughout the city of Chicago," said Hornbuckle, who is also a researcher at the renowned Iowa research institute IIHR-Hydroscience and Engineering.

"We do not know if there are any health concerns associated with this compound but there are very few published studies of its toxic properties," she said.

To conduct the test, UI researchers mounted air sample collection devices on platforms attached to the rear of two medical clinic vans provided by the Mobile C.A.R.E. Foundation of Chicago (Comprehensive Care for Chicagoland's Children with Asthma). The samples were collected during the six to eight hours each day that the vans visited sites, primarily elementary schools, where the mobile clinics provide service to students and their families.

In all, researchers found PCB11 in 91 percent of the 184 samples collected.

Regarding the possible source of the substance, Hornbuckle and her UI colleagues Dingfei Hu and Andres Martinez reported, "The wide distribution of PCB11 in Chicago air is consistent with volatilization of this compound from painted surfaces although the actual source of PCB11 is unknown."

Historically, PCB11 is one of 209 compounds manufactured between the late 1920s and the 1970s. The report noted that they were primarily marketed as mixtures called Aroclors by chemical companies until U.S. production ceased in the late 1970s. The distribution of PCB11 throughout residential areas of Chicago suggests that the compound is a past or current component of consumer paint products.

The report also said that the historical trend for PCB11 is unknown and probably different from that for Aroclors -- particularly if PCB11 is produced as a by-product of current paint manufacturing -- and that Aroclor-PCBs in the environment are decreasing worldwide, but this may not be the case for PCB11.

The prevalence of PCB11 in Chicago air suggests that there are either multiple current sources in the city or that this compound is ubiquitous in background air. This has important implications for human exposure to this potentially toxic compound, according to the study.

"While inhalation is not widely considered to be a major exposure route for higher molecular weight PCBs, it may be an important route for PCB11," Hornbuckle said. "Not only is PCB11 one of the most volatile PCBs, if it is present in interior paints, then indoor concentrations may be much higher than reported here."

Concluding that further study is needed, Hornbuckle and her colleagues said "Consumption of paint chips could be also a direct exposure route for children. It is also possible that PCB11 is present not only in Chicago, but in air elsewhere and also in fish, soil, water, food and humans."

Funding for the research project was provided by the National Institute for Environmental Health Sciences (NIEHS/NIH) Superfund Basic Research Program.

STORY SOURCE: University of Iowa News Services, 300 Plaza Centre One, Suite 371, Iowa City, Iowa 52242-2500

MEDIA CONTACTS: Keri Hornbuckle, UI College of Engineering, 319-384-0789 (office), 319-331-3053 (cell), keri-hornbuckle@uiowa.edu; Gary Galluzzo, University News Services, 319-384-0009, gary-galluzzo@uiowa.edu

Gary Galluzzo | EurekAlert!
Further information:
http://pubs.acs.org/journals/esthag/
http://www.uiowa.edu

Further reports about: Environmental PCB11 polychlorinated biphenols toxic substance

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>