Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UI research: PCBs found in soon-to-be-dredged Indiana Harbor and Ship Canal

13.01.2010
University of Iowa researchers have confirmed that sediments of the Indiana Harbor and Ship Canal (IHSC) in East Chicago, Ind., are contaminated with polychlorinated biphenyls (PCBs).

The IHSC, part of the Calumet River tributary of Lake Michigan, will begin being dredged in the next few years to maintain the proper depth for ship traffic, with uncertain environmental impacts in regard to PCBs. Scientists aren't sure whether dredging will help the situation by removing the potentially harmful compounds or hurt it by stirring them up.

Employing tandem mass spectrometry, an analytical technique to determine the elemental composition of a sample or molecule, the UI researchers found high levels of PCBs. The origin of the PCBs is unknown, but they strongly resemble Aroclor 1248, a potentially toxic compound that may pose direct health hazards to humans. This mixture was used in hydraulic fluids, vacuum pumps, plasticizers and adhesives, according to the U.S. Department of Health and Human Services.

"The presence of PCBs is important because dredging will impact the fate and transport of chemicals," said Keri Hornbuckle, professor of civil and environmental engineering in the UI College of Engineering and corresponding author of the study, published in the journal Environment International.

"It is quite possible that dredging will provide a major improvement in the situation. It may remove PCBs that are available to fish and other wildlife, and reduce the release of PCBs from the sediments," she said. "On the other hand, dredging might increase the availability and mobility of PCBs. Now that we know PCBs are present, these questions are pertinent."

Hornbuckle collaborated on the research with first author Andres Martinez, a graduate student in civil and environmental engineering; Karin Norstrom, a postdoctoral student in civil and environmental engineering; and Kai Wang, an assistant professor of biostatistics in the college of public health.

The IHSC is an active canal system that continues to support large vessels. But to remain viable for industrial shipping, the U.S. Army Corps of Engineers, Chicago District, began a long-term dredging project to restore adequate navigational depth.

Due to years of heavy industrial operation, the IHSC has been contaminated with PCBs. Prior to this study, there was little published data of the spatial extent and concentration magnitude of PCBs in the sediment in IHSC. The Army Corps of Engineers reported that PCBs have existed in IHSC sediment since 1977, but has not published a full report.

The PCB levels found here are comparable to other PCB-contaminated sites in the U.S., most established by law as Superfund Sites, which requires the removal of contaminants from environmental media such as soil, groundwater and sediment. The IHSC is not a Superfund Site.

Funding for the research project was provided by the National Institute for Environmental Health Sciences (NIEHS/NIH) Iowa Superfund Basic Research Program.

STORY SOURCE: University of Iowa Graduate College Office of External Relations, 205 Gilmore Hall, Iowa City, Iowa 52242-2500

MEDIA CONTACT: John Riehl, 319-335-3260, john-riehl@uiowa.edu

John Riehl | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>