Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UGA research examines fate of methane following the Deepwater Horizon spill

12.05.2014

The 2010 Deepwater Horizon blowout discharged roughly five million gallons of oil and up to 500,000 tons of natural gas into Gulf of Mexico offshore waters over a period of 84 days.

In the face of a seemingly insurmountable cleanup effort, many were relieved by reports following the disaster that naturally-occurring microbes had consumed much of the gas and oil.


Samantha Joye, a professor of marine sciences in the UGA Franklin College of Arts and Sciences, studies the oil plumes generated by the Deepwater Horizon blowout.

Credit: Todd Dickey, UGA

Now, a team of researchers led by University of Georgia marine scientists have published a paper in the journal Nature Geoscience that questions this conclusion and provides evidence that microbes may not be capable of removing contaminants as quickly and easily as once thought.

"Most of the gas injected into the Gulf was methane, a potent greenhouse gas that contributes to global climate change, so we were naturally concerned that this potent greenhouse gas could escape into the atmosphere," said Samantha Joye, senior author of the paper, director of the study and professor of marine science in UGA's Franklin College of Arts and Sciences. "Many assumed that methane-oxidizing microbes would simply consume the methane efficiently, but our data suggests that this isn't what happened."

Joye and colleagues from other universities and government organizations measured methane concentrations and the activity of methane-consuming bacteria for ten months, starting before the blowout with collection of an invaluable set of pre-discharge samples taken in March 2010.

The abundance of methane in the water allowed the bacteria that feed on the gas to flourish in the first two months immediately following the blowout, but their activity levels dropped abruptly despite the fact that methane was still being released from the wellhead.

This new data suggests the sudden drop in bacterial activity was not due to an absence of methane, but a host of environmental, physiological, and physical constraints that made it difficult or impossible for bacteria to consume methane effectively.

"For these bacteria to work efficiently, they need unlimited access to nutrients like inorganic nitrogen and trace metals, but they also need elevated methane levels to persist long enough to support high rates of consumption," Joye said. "The bacteria in the Gulf were probably able to consume about half of the methane released, but we hypothesize that an absence of essential nutrients and the dispersal of gas throughout the water column prevented complete consumption of the discharged methane."

Joye insists that while her group's conclusions differ from those presented in previous studies, there is no serious conflict between their analyses.

"The issue here was short-term sampling versus long-term time series sampling," she said. "I hope our paper clearly relays the message that long-term sampling is the only way to capture the evolution of a natural system as it responds to large perturbations like oil well blowouts or any other abrupt methane release."

Ultimately, scientists need to better understand the behavior of these microbes so that they may better gauge the environmental impacts of future accidents and methane releases due to climate change, she said.

"It's only a matter of time before we face another serious incident like Deepwater Horizon," Joye said. "The key is understanding the things that regulate how fast bacteria can consume methane, and that will give us insight into the ultimate fate of this potent greenhouse gas in our oceans."

###

Other authors on the paper include M. Crespo Medina, C.D. Meile, K.S. Hunter and J.J. Battles, University of Georgia; A-R. Diercks, V. L. Asper, A.M. Shiller and D-J. Joung, University of Southern Mississippi; V. J. Orphan and P. L. Tavormina, California Institute of Technology; L. M. Nigro, University of North Carolina, Chapel Hill; J.P. Chanton, Florida State University; R.M.W. Amon, Texas A&M University; A. Bracco and J.P. Montoya, Georgia Institute of Technology; T.A. Villareal, The University of Texas, Austin; A.M. Wood, NOAA Atlantic Oceanographic and Meteorological Laboratory.

Support for this study includes funding from the National Oceanic and Atmospheric Administration, the U.S. Department of Energy, the National Science Foundation and the Gulf of Mexico Research Initiative.

The full article is available online at http://dx.doi.org/10.1038/ngeo2156.

Samantha Joye | Eurek Alert!
Further information:
http://www.uga.edu

Further reports about: Arts Crespo Horizon Mexico Orphan activity atmosphere escape greenhouse long-term microbes

More articles from Ecology, The Environment and Conservation:

nachricht Coorong Fish Hedge Their Bets for Survival
27.03.2015 | University of Adelaide

nachricht Greener Industry If Environmental Authorities Change Strategy
27.03.2015 | University of Gothenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Speech dynamics are coded in the left motor cortex

31.03.2015 | Life Sciences

100-million-year-old scale insect practiced brood care

31.03.2015 | Life Sciences

Discovery of two new species of primitive fishes discovered

31.03.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>