Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UGA ecologists provide close-up of coral bleaching event

04.06.2014

Study documents corals before, during and after October 2009 episode

New research by University of Georgia ecologists sheds light on exactly what happens to coral during periods of excessively high water temperatures. Their study, published in the journal Limnology and Oceanography, documents a coral bleaching event in the Caribbean in minute detail and sheds light on how it changed a coral's community of algae—a change that could have long-term consequences for coral health, as bleaching is predicted to occur more frequently in the future.


An Orbicella faveolata coral in the Caribbean shows bleached areas adjacent to areas that retain their color. Bleaching occurs when heat-sensitive symbiotic algae that inhabit corals are expelled during episodes of excessively high water temperatures. (Credit: Dustin Kemp/UGA)

Millions of people around the world depend on coral reefs and the services they provide. While coral reefs make up less than 0.1 percent of the sea floor, they serve as habitats for about 25 percent to 35 percent of all the oceans' fishes, roughly 500 million people worldwide rely on them as a source of protein and for coastal protection, and they are responsible for billions of dollars in tourism and fisheries revenue.

Corals, in turn, depend upon single-celled algae that inhabit them, providing most of their food and giving them their color. But many species of these algae are highly sensitive to temperature, and are unable to survive as ocean waters warm. The coral can expel these algae when the water temperature grows too high, a phenomenon known as coral bleaching.

Lead author Dustin Kemp, a postdoctoral associate in the UGA Odum School of Ecology, had the opportunity to study a bleaching event while conducting research at a reef off Puerto Morelos, Mexico. He and his colleagues had been working there since 2007, taking samples seasonally from six colonies of Orbicella faveolata, also known as mountainous star coral, and their associated symbiotic algae.

Orbicella is the major reef-building coral in most of the Caribbean, but although common, it has an unusual trait. While most species of coral associate with just one dominant type of symbiotic algae, O. faveolata is able to associate with up to four co-dominant types at once—some of which are heat-tolerant and some of which are not—making it a particularly interesting coral to study.

In October 2009, the researchers' sampling trip coincided with a period of unusually high temperatures, allowing them the rare opportunity to collect samples while a bleaching event was taking place.

"We were able to follow this coral at a very high precision and document how diverse assemblages of symbiotic algae are differently affected by the bleaching phenomenon," Kemp said. "This was probably the first study ever to look at it under natural conditions this closely."

Kemp took hundreds of samples approximately every 12 inches along established transects—a narrow section where measurements are taken—across all six coral colonies. He made sure to include samples from areas that appeared bleached as well as from those that still retained color. Because they had been collecting at the site for two years, and continued collecting after this event, the researchers were able to compare the communities of symbiotic algae before, during and after bleaching.

They observed that before the bleaching event, these particular corals contained three different types of algae, two of which were somewhat tolerant of the warm-water bleaching perturbation.

During the bleaching event, heat-sensitive algae were found to be much less prevalent while the heat-tolerant algae remained. Two months later, heat-tolerant algae had taken over the parts of the coral formerly occupied by the heat-sensitive algae.

"The corals didn't die after this bleaching event, they recovered—and that's good, that's important—but there could be potential tradeoffs associated with the shift to heat-tolerant algae," said Kemp, adding that, for example, some heat-tolerant algae may provide less food than those they might replace. "That question of tradeoffs is what we're working on now."

Kemp is currently conducting research at reefs in the Caribbean and Pacific, looking at how heat-tolerant algae affect corals in areas where corals have been documented to have stable, long-term associations with heat-tolerant algae.

"In the Caribbean, we've lost 80 percent of the corals just in my lifetime," Kemp said. "We know that increased ocean temperatures are one of the major threats to coral reefs worldwide. So understanding coral-algae dynamics, and how different algae can handle increased temperature, is important to see how the whole ecosystem will be affected by this environmental perturbation."

The study's coauthors are Xavier Hernandez-Pech and Roberto Iglesias-Prieto of the Universidad Nacional Autónoma de México, William K. Fitt of the UGA Odum School of Ecology and Gregory W. Schmidt of the UGA department of plant biology. The research was supported by the National Science Foundation and the World Bank. The paper is available online at http://aslo.org/lo/pdf/vol_59/issue_3/0788.pdf.

For more information about the Odum School of Ecology, see www.ecology.uga.edu.

Dustin Kemp | Eurek Alert!
Further information:
http://news.uga.edu/releases/article/ecologists-close-up-coral-bleaching-event-0614/

Further reports about: Ecology October UGA corals ecologists heat-sensitive perturbation phenomenon species symbiotic temperature temperature

More articles from Ecology, The Environment and Conservation:

nachricht Saving coral reefs depends more on protecting fish than safeguarding locations
03.09.2015 | Wildlife Conservation Society

nachricht Seabird SOS
01.09.2015 | University of California - Santa Barbara

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power...

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Together - Work - Experience

03.09.2015 | Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

 
Latest News

Lighter with Laser Welding

03.09.2015 | Process Engineering

For 2-D boron, it's all about that base

03.09.2015 | Materials Sciences

Phagraphene, a 'relative' of graphene, discovered

03.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>