Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UGA ecologists provide close-up of coral bleaching event

04.06.2014

Study documents corals before, during and after October 2009 episode

New research by University of Georgia ecologists sheds light on exactly what happens to coral during periods of excessively high water temperatures. Their study, published in the journal Limnology and Oceanography, documents a coral bleaching event in the Caribbean in minute detail and sheds light on how it changed a coral's community of algae—a change that could have long-term consequences for coral health, as bleaching is predicted to occur more frequently in the future.


An Orbicella faveolata coral in the Caribbean shows bleached areas adjacent to areas that retain their color. Bleaching occurs when heat-sensitive symbiotic algae that inhabit corals are expelled during episodes of excessively high water temperatures. (Credit: Dustin Kemp/UGA)

Millions of people around the world depend on coral reefs and the services they provide. While coral reefs make up less than 0.1 percent of the sea floor, they serve as habitats for about 25 percent to 35 percent of all the oceans' fishes, roughly 500 million people worldwide rely on them as a source of protein and for coastal protection, and they are responsible for billions of dollars in tourism and fisheries revenue.

Corals, in turn, depend upon single-celled algae that inhabit them, providing most of their food and giving them their color. But many species of these algae are highly sensitive to temperature, and are unable to survive as ocean waters warm. The coral can expel these algae when the water temperature grows too high, a phenomenon known as coral bleaching.

Lead author Dustin Kemp, a postdoctoral associate in the UGA Odum School of Ecology, had the opportunity to study a bleaching event while conducting research at a reef off Puerto Morelos, Mexico. He and his colleagues had been working there since 2007, taking samples seasonally from six colonies of Orbicella faveolata, also known as mountainous star coral, and their associated symbiotic algae.

Orbicella is the major reef-building coral in most of the Caribbean, but although common, it has an unusual trait. While most species of coral associate with just one dominant type of symbiotic algae, O. faveolata is able to associate with up to four co-dominant types at once—some of which are heat-tolerant and some of which are not—making it a particularly interesting coral to study.

In October 2009, the researchers' sampling trip coincided with a period of unusually high temperatures, allowing them the rare opportunity to collect samples while a bleaching event was taking place.

"We were able to follow this coral at a very high precision and document how diverse assemblages of symbiotic algae are differently affected by the bleaching phenomenon," Kemp said. "This was probably the first study ever to look at it under natural conditions this closely."

Kemp took hundreds of samples approximately every 12 inches along established transects—a narrow section where measurements are taken—across all six coral colonies. He made sure to include samples from areas that appeared bleached as well as from those that still retained color. Because they had been collecting at the site for two years, and continued collecting after this event, the researchers were able to compare the communities of symbiotic algae before, during and after bleaching.

They observed that before the bleaching event, these particular corals contained three different types of algae, two of which were somewhat tolerant of the warm-water bleaching perturbation.

During the bleaching event, heat-sensitive algae were found to be much less prevalent while the heat-tolerant algae remained. Two months later, heat-tolerant algae had taken over the parts of the coral formerly occupied by the heat-sensitive algae.

"The corals didn't die after this bleaching event, they recovered—and that's good, that's important—but there could be potential tradeoffs associated with the shift to heat-tolerant algae," said Kemp, adding that, for example, some heat-tolerant algae may provide less food than those they might replace. "That question of tradeoffs is what we're working on now."

Kemp is currently conducting research at reefs in the Caribbean and Pacific, looking at how heat-tolerant algae affect corals in areas where corals have been documented to have stable, long-term associations with heat-tolerant algae.

"In the Caribbean, we've lost 80 percent of the corals just in my lifetime," Kemp said. "We know that increased ocean temperatures are one of the major threats to coral reefs worldwide. So understanding coral-algae dynamics, and how different algae can handle increased temperature, is important to see how the whole ecosystem will be affected by this environmental perturbation."

The study's coauthors are Xavier Hernandez-Pech and Roberto Iglesias-Prieto of the Universidad Nacional Autónoma de México, William K. Fitt of the UGA Odum School of Ecology and Gregory W. Schmidt of the UGA department of plant biology. The research was supported by the National Science Foundation and the World Bank. The paper is available online at http://aslo.org/lo/pdf/vol_59/issue_3/0788.pdf.

For more information about the Odum School of Ecology, see www.ecology.uga.edu.

Dustin Kemp | Eurek Alert!
Further information:
http://news.uga.edu/releases/article/ecologists-close-up-coral-bleaching-event-0614/

Further reports about: Ecology October UGA corals ecologists heat-sensitive perturbation phenomenon species symbiotic temperature temperature

More articles from Ecology, The Environment and Conservation:

nachricht Roadmap for better protection of Borneo’s cats and small carnivores
30.05.2016 | Forschungsverbund Berlin e.V.

nachricht Worldwide Success of Tyrolean Wastewater Treatment Technology
27.05.2016 | Universität Innsbruck

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>