Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF researchers look for ways to make an emerging technology safe for environment

22.03.2012
The percentage of electronic waste occupying our landfills has grown at an alarming rate over the last decade, giving rise to concerns about the toxicity of components used in consumer electronics.
Researchers at the University of Florida are looking for ways to minimize environmental hazards associated with a material likely to play an increasingly important role in the manufacture of these goods in the future. The results of their most recent studies are published in the March 2012 issue of Nanotoxicology.

Carbon nanotubes are already being used in touch screens and to make smaller, more efficient transistors. And if current research to develop them for use in lithium ion batteries is successful, carbon nanotubes could become important technology for powering everything from smartphones to hybrid vehicles. But for all of the promise developers see in this emerging technology, there is also some concern.

“Depending on how the nanotubes are used, they can be toxic – exhibiting properties similar to asbestos in laboratory mice,” said Jean-Claude Bonzongo, associate professor of environmental engineering at UF’s College of Engineering. He is involved in a research collaboration with Kirk Ziegler, a UF associate professor of chemical engineering, to minimize this important material’s potential for harm.

In particular, the UF team is investigating toxicity associated with aqueous solutions of carbon nanotubes that would be used in certain manufacturing processes.

“At the nano-scale, electron interactions between atoms are restricted, and that creates some of the desirable traits like the high conductivity that manufacturers want to take advantage of with carbon nanotubes,” Ziegler said. “But exploiting those properties is difficult because the nanotubes tend to clump together.”

For that reason, carbon nanotubes have to be treated in some way to keep them dispersed and available for electron interactions that make them good conductors. One way to do it is to mix them with an aqueous solution that acts as a detergent and separates the tangled bundles.

“Some of the surfactants, or solutions, are toxic on their own,” Bonzongo said. “And others become toxic in the presence of carbon nanotubes.”
He and Zeigler are focusing their investigations on solutions that become hazardous when mixed with the carbon nanotubes. Their most recent results indicate that toxicity can be reduced by controlling the ratio of liquid to particulate.

A cost-effective means of unbundling nanotubes remains one of the last hurdles for manufacturers to clear before they can employ the technology in mass-produced electronics. Current processes used for laboratory prototypes, including mechanical homogenization or centrifugal sifting, would be too expensive for manufacturing consumer electronics. For that reason, liquid suspension agents may be the way forward if we are to have nano-tech products for the masses.

“It’s an emerging technology,” Bonzongo said. “We want to get ahead of it and make sure that the progress is sustainable — in terms of the environment and human health.”
Credits
WriterDonna Hesterman, donna.hesterman@ufl.edu, 352-846-2573SourceJean-Claude Bonzongo , bonzongo@ufl.edu, 352-392-7604SourceKirk Ziegler, kziegler@che.ufl.edu, 352-392-3412

Jean-Claude Bonzongo | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>