Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UF research aims to help preserve plants, animals caught between forest 'fragments'

Maintaining the world's threatened animal and plant species may rest with something as simple as knowing how far a bird can fly before it must answer nature's call.

Birds disperse seeds as they travel, but deforestation can mean those seeds might land where they can't sprout and grow, according to a University of Florida researcher who co-wrote a study in last month's issue of Ecology that looks at how tropical birds disperse plant seeds in Brazil's Amazon rainforest.

If birds spread plant seeds in inhospitable places, the long-term consequences can be reduced diversity in large tracts of the Amazon, said Emilio Bruna, an associate professor in wildlife ecology and conservation. And that could be bad news for scientists trying to study and conserve species in the most biodiversity-rich land mass on Earth.

The work took a comprehensive approach to the question of where seeds are dispersed — not only tracking plants, recording bird flight patterns and studying their behavior, but incorporating their observations in sophisticated mathematical models and computer simulations.

Bruna, who holds joint appointments in UF's Institute of Food and Agricultural Sciences and Center for Latin American Studies, worked with scientists from Columbia University, Louisiana State University and Brazil's National Institute for Amazonian Research.

The idea behind the National Science Foundation-funded study was to look at seed dispersal in parts of the rainforest where deforestation has left pockets of undisturbed land, called "fragments."

Human activity, such as logging or housing development or farming, leaves those fragments behind, sometimes close together; sometimes not.

Ensuring the survival of plants and animals that live in those fragmented areas, and finding ways to connect those fragments, is a big focus for conservation biologists, Bruna said.

"Understanding the consequences of habitat fragmentation is a huge area of research because that's what a lot of ecosystems have come to — either that's all we're left with, or we're heading in that direction," he said. "It's a really pressing problem across the world."

The study began with researchers trapping six species of tropical birds in mist nets and equipping them with radio transmitters, so that they could follow individual birds' movements.

Before that, however, researchers fed the birds seeds from native plants and monitored their digestive habits, using the data to build statistical models that, combined with information from the radio transmitters, let them estimate how far the birds flew before dropping seeds.

Researchers were surprised to learn that only one of the six species, Turdus albicollis — the largest of the birds they studied — actually ingested the seeds. That species also flew farther than any of the other birds.

"A lot of ecology has focused on the movement of birds," said Maria Uriarte, a professor in ecology, evolution and environmental biology at Columbia University, and the paper's lead author. "We found that it's all about the big birds and where they like to be."

The other birds would eat, fly to a nearby tree branch, chew the seed for a bit and usually spit it out.

The seed in question belonged to a plant called Heliconia acuminata. The scientists chose it because it grows low to the ground, is easy to work with and easily identified. The plant has no common name, but casual observers would probably liken it to a Bird of Paradise, he said.

If the Heliconia acuminata's seed is dropped by a bird between forest fragments, he said, the seed more than likely will bake in the heat, and no plant will grow. Long-distance dispersal is critical for plants to establish new populations.

The take-home message for scientists and conservationists is that if forest fragments are so far apart that the animals and plants can't make the trip, humans may have to lend a helping hand.

It may be that some type of stepping-stone vegetation is needed between fragments, so that birds and animals have places to rest as they move from one to another. Or maybe humans need to leave forested corridors between those fragments to connect them, Bruna said.

"This study really highlights the importance of, the word that's used a lot is 'connectivity' — figuring out ways we can maintain fragments of habitat and keep them connected to each other."

Emilio Bruna | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>