Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB scientists track environmental influences on giant kelp with help from satellite data

18.05.2011
Scientists at UC Santa Barbara have developed new methods for studying how environmental factors and climate affect giant kelp forest ecosystems at unprecedented spatial and temporal scales.

The scientists merged data collected underwater by UCSB divers with satellite images of giant kelp canopies taken by the Landsat 5 Thematic Mapper. The findings are published in the feature article of the May 16 issue of Marine Ecology Progress Series.

In this marriage of marine ecology and satellite mapping, the team of UCSB scientists tracked the dynamics of giant kelp –– the world's largest alga –– throughout the entire Santa Barbara Channel at approximately six-week intervals over a period of 25 years, from 1984 through 2009.

David Siegel, co-author, professor of geography and co-director of UCSB's Earth Research Institute, noted that having 25 years of imagery from the same satellite is unprecedented. "I've been heavily involved in the satellite game, and a satellite mission that goes on for more than 10 years is rare. One that continues for more than 25 years is a miracle," said Siegel. Landsat 5 was originally planned to be in use for only three years.

Forests of giant kelp are located in temperate coastal regions throughout the world. They are among the most productive ecosystems on Earth, and giant kelp itself provides food and habitat for numerous ecologically and economically important near-shore marine species. Giant kelp also provides an important source of food for many terrestrial and deep-sea species, as kelp that is ripped from the seafloor commonly washes up on beaches or is transported offshore into deeper water.

Giant kelp is particularly sensitive to changes in climate that alter wave and nutrient conditions. The scientists found that the dynamics of giant kelp growing in exposed areas of the Santa Barbara Channel were largely controlled by the occurrence of large wave events. Meanwhile, kelp growing in protected areas was most limited by periods of low nutrient levels.

Images from the Landsat 5 satellite provided the research team with a new "window" into how giant kelp changes through time. The satellite was built in Santa Barbara County at what was then called the Santa Barbara Research Center and launched from Vandenberg Air Force Base. It was designed to cover the globe every 16 days and has collected millions of images. Until recently these images were relatively expensive and their high cost limited their use in scientific research.

However, in 2009, the entire Landsat imagery library was made available to the public for the first time at no charge. "In the past, it was not feasible to make these longtime series, because each scene cost over $500," said Kyle C. Cavanaugh, first author and UCSB graduate student in marine science. "In the past, you were lucky to get a handful of images. Once these data were released for free, all of a sudden we could get hundreds and hundreds of pictures through time."

Giant kelp grows to lengths of over 100 feet and can grow up to 18 inches per day. Plants consist of bundles of ropelike fronds that extend from the bottom to the sea surface. Fronds live for four to six months, while individual plants live on average for two to three years. According to the article,

"Giant kelp forms a dense floating canopy at the sea surface that is distinctive when viewed from above. …Water absorbs almost all incoming near-infrared energy, so kelp canopy is easily differentiated using its near-infrared reflectance signal."

Cavanaugh explained that, thanks to the satellite images, his team was able to see how the biomass of giant kelp fluctuates within and among years at a regional level for the first time. "It varies an enormous amount," said Cavanaugh. "We know from scuba diver observations that individual kelp plants are fast-growing and short-lived, but these new data show the patterns of variability that are also present within and among years at much larger spatial scales. Entire forests can be wiped out in days, but then recover in a matter of months."

Satellite data were augmented by information collected by the Santa Barbara Coastal Long Term Ecological Research Project (SBC LTER), which is based at UCSB and is part of the National Science Foundation's Long Term Ecological Research (LTER) Network. In 1980, the NSF established the LTER Program to support research on long-term ecological phenomena. SBC LTER became the 24th site in the LTER network in April of 2000. The SBC LTER contributed 10 years of data from giant kelp research dives to the current study.

The scientists said that interdisciplinary collaboration between geographers and marine scientists is common at UCSB and is a strength of its marine science program.

Daniel C. Reed, co-author and research biologist with UCSB's Marine Science Institute, is the principal investigator of SBC LTER. Reed has spent many hours as a research diver. He explained: "Kelp occurs in discrete patches. The patches are connected genetically and ecologically. Species that live in them can move from one patch to another. Having the satellite capability allows us to look at the dynamics of how these different patches are growing and expanding, and to get a better sense as to how they are connected. We can't get at that through diver plots alone. The diver plots, however, help us calibrate the satellite data, so it's really important to have both sources of information."

The fourth author of the paper is Philip E. Dennison. He received his Ph.D. in geography at UCSB and is now an associate professor in the Department of Geography at the University of Utah.

The research team received funding from NASA and the National Science Foundation.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>