Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB scientists track environmental influences on giant kelp with help from satellite data

18.05.2011
Scientists at UC Santa Barbara have developed new methods for studying how environmental factors and climate affect giant kelp forest ecosystems at unprecedented spatial and temporal scales.

The scientists merged data collected underwater by UCSB divers with satellite images of giant kelp canopies taken by the Landsat 5 Thematic Mapper. The findings are published in the feature article of the May 16 issue of Marine Ecology Progress Series.

In this marriage of marine ecology and satellite mapping, the team of UCSB scientists tracked the dynamics of giant kelp –– the world's largest alga –– throughout the entire Santa Barbara Channel at approximately six-week intervals over a period of 25 years, from 1984 through 2009.

David Siegel, co-author, professor of geography and co-director of UCSB's Earth Research Institute, noted that having 25 years of imagery from the same satellite is unprecedented. "I've been heavily involved in the satellite game, and a satellite mission that goes on for more than 10 years is rare. One that continues for more than 25 years is a miracle," said Siegel. Landsat 5 was originally planned to be in use for only three years.

Forests of giant kelp are located in temperate coastal regions throughout the world. They are among the most productive ecosystems on Earth, and giant kelp itself provides food and habitat for numerous ecologically and economically important near-shore marine species. Giant kelp also provides an important source of food for many terrestrial and deep-sea species, as kelp that is ripped from the seafloor commonly washes up on beaches or is transported offshore into deeper water.

Giant kelp is particularly sensitive to changes in climate that alter wave and nutrient conditions. The scientists found that the dynamics of giant kelp growing in exposed areas of the Santa Barbara Channel were largely controlled by the occurrence of large wave events. Meanwhile, kelp growing in protected areas was most limited by periods of low nutrient levels.

Images from the Landsat 5 satellite provided the research team with a new "window" into how giant kelp changes through time. The satellite was built in Santa Barbara County at what was then called the Santa Barbara Research Center and launched from Vandenberg Air Force Base. It was designed to cover the globe every 16 days and has collected millions of images. Until recently these images were relatively expensive and their high cost limited their use in scientific research.

However, in 2009, the entire Landsat imagery library was made available to the public for the first time at no charge. "In the past, it was not feasible to make these longtime series, because each scene cost over $500," said Kyle C. Cavanaugh, first author and UCSB graduate student in marine science. "In the past, you were lucky to get a handful of images. Once these data were released for free, all of a sudden we could get hundreds and hundreds of pictures through time."

Giant kelp grows to lengths of over 100 feet and can grow up to 18 inches per day. Plants consist of bundles of ropelike fronds that extend from the bottom to the sea surface. Fronds live for four to six months, while individual plants live on average for two to three years. According to the article,

"Giant kelp forms a dense floating canopy at the sea surface that is distinctive when viewed from above. …Water absorbs almost all incoming near-infrared energy, so kelp canopy is easily differentiated using its near-infrared reflectance signal."

Cavanaugh explained that, thanks to the satellite images, his team was able to see how the biomass of giant kelp fluctuates within and among years at a regional level for the first time. "It varies an enormous amount," said Cavanaugh. "We know from scuba diver observations that individual kelp plants are fast-growing and short-lived, but these new data show the patterns of variability that are also present within and among years at much larger spatial scales. Entire forests can be wiped out in days, but then recover in a matter of months."

Satellite data were augmented by information collected by the Santa Barbara Coastal Long Term Ecological Research Project (SBC LTER), which is based at UCSB and is part of the National Science Foundation's Long Term Ecological Research (LTER) Network. In 1980, the NSF established the LTER Program to support research on long-term ecological phenomena. SBC LTER became the 24th site in the LTER network in April of 2000. The SBC LTER contributed 10 years of data from giant kelp research dives to the current study.

The scientists said that interdisciplinary collaboration between geographers and marine scientists is common at UCSB and is a strength of its marine science program.

Daniel C. Reed, co-author and research biologist with UCSB's Marine Science Institute, is the principal investigator of SBC LTER. Reed has spent many hours as a research diver. He explained: "Kelp occurs in discrete patches. The patches are connected genetically and ecologically. Species that live in them can move from one patch to another. Having the satellite capability allows us to look at the dynamics of how these different patches are growing and expanding, and to get a better sense as to how they are connected. We can't get at that through diver plots alone. The diver plots, however, help us calibrate the satellite data, so it's really important to have both sources of information."

The fourth author of the paper is Philip E. Dennison. He received his Ph.D. in geography at UCSB and is now an associate professor in the Department of Geography at the University of Utah.

The research team received funding from NASA and the National Science Foundation.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>