Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UConn researchers discover that 'red tide' species is deadlier than first thought

24.07.2012
Plankton species produces not 1, but 2, deadly toxins

A University of Connecticut researcher and his team have discovered that a species of tiny aquatic organism prominent in harmful algal blooms sometimes called "red tide" is even deadlier than first thought, with potential consequences for entire marine food chains.

Professor Hans Dam and his research group in the school's Department of Marine Sciences have discovered that the plankton species Alexandrium tamarense contains not one but two different types of toxins, one that's deadly to large organisms and one that's deadly to small predators.

"If it's killing multicellular animals with one toxin and small protists with another, it could be the killer of the ocean world," he says.

Dam speculates that this ability to harm both large and small oceanic predators could lead to disruptions in the marine food web during large Alexandrium blooms, like the red tide that occurred along the Northeast coast in 2005, severely affecting the Cape Cod area.

"These small predators that are being affected by the reactive oxygen species are the things that typically eat large amounts of the algae and keep them from growing like crazy," says Dam. "This brings up a whole new line of inquiry for us: What will actually control these algae in the future?"

In small numbers, Alexandrium are virtually harmless to humans, says Dam. But when they're eaten by other clams, mussels or other microorganisms – which are then eaten by small crustaceans, which are in turn eaten by larger crustaceans or fish – the toxins can build up in large amounts. So in some parts of the world, eating contaminated shellfish, such as lobsters, clams and fish, has led to illness or death.

However, says Dam, that toxin only affects animals that have central nervous systems.

"This toxin blocks sodium channels in anything that has a well-developed nervous system," he says. "But most of the organisms in the ocean are not those kinds of organisms. They're single-celled, similar to the algae themselves, and they don't have a well-developed nervous system."

Scientists had begun to notice that even though Alexandrium's toxin isn't supposed to affect single-celled animals, when the algae was in the vicinity of some of its one-celled predators, some of those predators got sick and died. Dam's post-doctoral researcher Hayley Flores showed in laboratory experiments that in fact the alga produces a different toxin, called a reactive oxygen species, that kills their predators by popping their cell membrane.

"If you only have one cell, lysing your cell membrane is all it takes to kill you," says Dam. "This new mechanism of toxicity, combined with the other, is pretty evil."

Dam notes that although harmful algal blooms have been linked to human activities, such as pollution runoff from rivers, there are many different factors that could affect the blooms, and scientists still aren't sure exactly how they begin. He speculates that the algae may have become more toxic over time, which has led to their proliferation.

His group will next try to understand how the alga produces the reactive oxygen species and whether it also affects animals multicellular animals. He's also working with researchers at the University of Los Lagos in Chile to understand how Alexandrium may affect important commercial species such as salmon and king crab

"The amazing thing is, when you look at these algae under a microscope, they're so beautiful – but they're so deadly," says Dam. "We call them the beautiful assassins."

Tom Breen | EurekAlert!
Further information:
http://www.uconn.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>