Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA report urges new global policy effort to tackle crisis of plastic litter in oceans

30.10.2013
Plastic litter is one of the most significant problems facing the world's marine environments. Yet in the absence of a coordinated global strategy, an estimated 20 million tons of plastic litter enter the ocean each year.

A new report by authors from UCLA School of Law's Emmett Center on Climate Change and the Environment and UCLA's Institute of the Environment and Sustainability explores the sources and impacts of plastic marine litter and offers domestic and international policy recommendations to tackle these growing problems — a targeted, multifaceted approach aimed at protecting ocean wildlife, coastal waters, coastal economies and human health.

"Stemming the Tide of Plastic Marine Litter: A Global Action Agenda," the Emmett Center's most recent Pritzker Environmental Law and Policy Brief, documents the devastating effects of plastic marine litter, detailing how plastic forms a large portion of our waste stream and typically does not biodegrade in marine environments. Plastic marine litter has a wide range of adverse environmental and economic impacts, from wildlife deaths and degraded coral reefs to billions of dollars in cleanup costs, damage to sea vessels, and lost tourism and fisheries revenues. The brief describes the inadequacy of existing international legal mechanisms to resolve this litter crisis, calling on the global community to develop a new international treaty while also urging immediate action to implement regional and local solutions.

"Plastic marine litter is a growing global environmental threat imposing major economic costs on industry and government," said report co-author Mark Gold, an associate director of the Institute of the Environment and Sustainability. Marine plastic pollution slowly degrades and has spread to every corner of the world's oceans, from remote islands to the ocean floor. Voluntary half-measures are not preventing devastating global impacts to marine life, the economy and public health. Although there is no one panacea, we have identified the top 10 plastic pollution–prevention actions that can be implemented now to begin drastically reducing plastic marine litter."

In "Stemming the Tide of Plastic Marine Litter," the authors review the universe of studies, policies and international agreements relevant to the problem and provide a suite of recommendations to achieve meaningful reductions in plastic marine litter. The report's "Top 10" list of recommended actions includes a new international treaty with strong monitoring and enforcement mechanisms; domestic and local regulatory actions, such as bans of the most common and damaging types of plastic litter; extended producer-responsibility programs; and the creation of an "ocean friendly" certification program for plastic products.

"Because global mismanagement of plastic is fueling the growing marine litter problem, policy responses are needed at all levels, from the international community of nations down to national and local communities," said report co-author Cara Horowitz, executive director of the Emmett Center on Climate Change and the Environment. "We can act now to rapidly scale up effective policies and programs to address plastic marine litter. And hopefully, international collaboration to reduce plastic litter will lay a foundation for broader cooperation on other significant issues affecting the health of our oceans."

Plastic marine litter has its origins in both land- and ocean-based sources, from untreated sewage and industrial and manufacturing sites to ships and oil and gas platforms. Pushed by the natural motion of wind and ocean currents — often over long distances — the litter is present in oceans worldwide, as well as in sea floor sediment and coastal sands. As the particles break down and disperse, they have a wide range of adverse environmental, public health and economic consequences with the potential to kill wildlife, destroy natural resources and disrupt the food chain.

The Pritzker Environmental Law and Policy Briefs are published by UCLA School of Law and the Emmett Center on Climate Change and the Environment in conjunction with researchers from a wide range of academic disciplines and the broader environmental law community. They are made possible through a generous donation by Anthony "Tony" Pritzker, managing partner and co-founder of The Pritzker Group. The briefs provide expert analysis to further public dialogue on issues impacting the environment. All papers in the series are available here.

UCLA School of Law, founded in 1949, is the youngest major law school in the nation and has established a tradition of innovation in its approach to teaching, research and scholarship. With approximately 100 faculty and 1,100 students, the school pioneered clinical teaching, is a leader in interdisciplinary research and training, and is at the forefront of efforts to link research to its effects on society and the legal profession.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Sara Rouche | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>