Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Riverside entomologists say biocontrol of insect pest in the Galapagos Islands is a major success

23.04.2010
Team led by Mark Hoddle measured the impact of biocontrol on the cottony cushion scale

The Galapagos Islands, made famous by Charles Darwin, have a unique biota now highly threatened by invasive species because of increased tourism and population growth. Indeed, alien or exotic insects today constitute 23 percent of the Galapagos insect fauna. One of these insect invaders is the cottony cushion scale, a sap sucking bug native to Australia.

Capable of infesting many woody ornamentals and crops, the cottony cushion scale decreases the vitality of its host by sucking phloem sap from the leaves, twigs, branches, and trunk. But natural enemies, such as the lady bug beetle, Rodolia cardinalis, can bring the cottony cushion scale under control in a short time – a form of pest suppression called biocontrol.

In fall 2009, entomologist Mark Hoddle, the director of the Center for Invasive Species at the University of California, Riverside, and colleagues visited the Galapagos Islands to assess the impact and safety of the lady bug beetle that had been released in 2002 to suppress the cottony cushion scale.

"Populations of cottony cushion scale in 2002 were so high and spread across so many islands that several endemic and native plant populations were thought to be going into decline because of heavy infestations," said Hoddle, also a biocontrol specialist in the Department of Entomology.

Combating the cottony cushion scale was a joint effort between the Charles Darwin Research Foundation and the Galapagos Islands National Park Service, which neighbors the foundation on the island of Santa Cruz in the Galapagos.

"Soon after release, the lady bug beetle readily established and spread," Hoddle said. "Subsequent monitoring indicated that it was having the desired effect on the cottony cushion scale populations, which were collapsing because of feeding by larval and adult lady bug beetles. Our project was to follow up to see whether the lady bug beetle in 2009 was still exerting high levels of control over the cottony cushion scale and whether the project was safe as predicted by lab studies."

After about three months of survey work Hoddle, along with Christina Hoddle (UCR), Charlotte Causton (Charles Darwin Research Station), and Roy Van Driesche (University of Massachusetts, Amherst), concluded that the cottony cushion scale populations were very low in most areas on the Galapagos Islands.

"Pest numbers have been reduced by more than 99 percent on some native plants like mangroves, which were very susceptible to attack by cottony cushion scale," Hoddle said. "While from other rarer native plants, like Darwiniothamnus tenuifolius, the pest appears to have been completely removed."

To assess the impact of the beetle on the cottony cushion scale, Hoddle's team surveyed native plants across five different islands – Santa Cruz, Isabela, Espanola, San Cristobal, and Santiago – and recorded the presence and absence of cottony cushion scale and the lady bug beetle, and their densities. The team then compared the data to similar data from the same areas – and in many instances, from the very same trees – that had been collected before the lady bug beetle was released into the Galapagos.

"We also found no evidence that the lady bug beetle was attacking non-target species," Hoddle said. "The bug was never seen feeding on other insects in the Galapagos even when the cottony cushion scale and the non-target species were side by side on the same twig."

The cottony cushion scale project with the beetle was born in Southern California in 1888-1889 and saved California's then fledging citrus industry.

"The project in the Galapagos is an extension of the California success story," Hoddle said. "But in the Galapagos the biocontrol agent is protecting native plants instead of agricultural crops. The project has gone full circle – from 1880's citrus protection in Southern California to, in 2010, conservation of endangered plants in the Galapagos. A pretty incredible progression that would have been inconceivable by California entomologists and citrus workers back in 1888!"

The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 18,000 is expected to grow to 21,000 students by 2020. The campus is planning a medical school and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>