Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UBC study first to show evolution's impact on ecosystems

03.04.2009
Scientists have come to agree that different environments impact the evolution of new species. Now experiments conducted at the University of British Columbia are showing for the first time that the reverse is also true.

Researchers from the UBC Biodiversity Research Centre created mini-ecosystems in large aquatic tanks using different species of three-spine stickleback fish and saw substantial differences in the ecosystems in as little as 11 weeks.

Their findings are published in today’s Advanced Online Publication of the journal Nature.

Stickleback fish originated in the ocean but began populating freshwater lakes and streams following the last ice age. Over the past 10,000 years – a relatively short time span in evolutionary terms – different species with distinct physical traits have emerged in some fresh water lakes.

The UBC study involved new species found in British Columbia lakes that have evolved distinct physical traits: limnetic sticklebacks (smaller open water dwellers with narrow mouths), benthic sticklebacks (larger bottom dwellers with a wide gape) and a generalist species to represent the probable ancestor of the two species.

“Simply by what they eat and how they live, even young species that have ‘recently’ diversified can have a major impact on their food web,” says study lead author Luke Harmon, who conducted the study while a post-doctoral fellow at UBC. He is now an assistant professor at the University of Idaho. “This study adds to a broader body of literature showing that species diversity matters in important ways.”

Further analysis showed the tanks with the two newest species had larger molecules of dissolved organic carbon, or bits of decaying plants and animals. This prevented sunlight from penetrating the water and inhibited plant growth. “Our study shows that through evolution, sticklebacks can engineer the light environment of their own ecosystems,” says co-author Blake Matthews, a UBC post-doctoral fellow who is now a researcher at Eawag, the Swiss Federal Institute of Aquatic Science and Technology. “It also demonstrates how speciation of a predator might alter the evolutionary course of other organisms in the food web.”

“As new species arise from a common ancestor and evolve new ways of exploiting the environment, each inadvertently reshapes the dynamics of the ecosystem around it,” says co-author UBC Prof. Dolph Schluter. “We are just beginning to understand how.”

Brian Lin | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>