Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of Minnesota research finds most road salt is making it into the state's lakes and rivers

11.02.2009
Smarter application could help lessen the environmental impact

Research at the University of Minnesota has revealed that road salt used throughout the winter is making the state's lakes and rivers saltier, which could affect aquatic life and drinking water. The research indicates that better training of snow plow drivers and more judicious use of road salt could help lessen the impact and save the state money.

To watch a video with research team leader Heinz Stefan, go to http://www1.umn.edu/urelate/newsservice/Multimedia_Videos/road_salt.htm

The researchers studied 39 lakes, three major rivers, 10 tributaries and numerous observation wells, and the results are alarming. They found that approximately 70 percent of the road salt being applied in the metro area is retained in our watershed. The university researchers recently reported their findings to the Local Road Research Board. Nearly 350,000 tons of sodium chloride, commonly referred to as road salt, are applied for de-icing in the Twin Cities metro area every year.

"Nobody has asked the question of where the salt ultimately goes after the winter season is over," said research team leader Stefan, a civil engineering professor at the university's St. Anthony Falls Laboratory. "Our study has been concerned with that question in particular."

Stefan's team (including Eric Novotny, Andrew Sander, Dan Murphy and Omid Mohseni) tracked the movement of chloride applied by humans throughout the water system, distinguishing it from geological or natural origins. They found that the chloride concentrations (salinity) in 39 metro area lakes have increased over the past 22 years, following a similar trend in road salt purchases by the state of Minnesota. Both show a marked increase from 1984 to 2005, which if continued would double salinity in these lakes in about 50 years. Compare this with a near zero concentration in the 1950s, when road salt application began.

The effects could be severe. Continuous levels of chloride concentration (as low as 250 mg/L, the equivalent of one teaspoon of salt in five gallons of water) have been shown to be harmful to aquatic life and to affect the taste of drinking water. In 2008, the Minnesota Pollution Control Agency listed five metro area streams as already impaired by chloride. Increases in sodium and chloride have been shown to decrease the biodiversity in wetland areas, altering the development of wood frogs, decreasing the number and types of fish available, and increasing mortality rates of organisms that rely on an aquatic system. Increases in sodium and chloride have also been shown to increase mobilization of heavy metals in the soil along major highways.

To help reduce the effects, researchers recommend more judicious use of road salt through increased training of snow plow drivers to get the most out of the road salt they apply. Applying sodium chloride to pavement temperatures below 15 degrees Fahrenheit is generally not effective. At higher temperatures, researchers suggest using only one to three cups of salt per 1000 square feet. These recommendations are working at the University of Minnesota. Since training began two years ago, the university has reduced use of road salt by 41 percent and saved more than $50,000 in the first year.

Patty Mattern | EurekAlert!
Further information:
http://www.umn.edu
http://www.pca.state.mn.us/programs/roadsalt.html

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>