Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M study finds rising levels of dioxins from common soap ingredient in Mississippi River sediments

19.05.2010
Dioxins in general decreasing, but those derived from triclosan increasing

Specific dioxins derived from the antibacterial agent triclosan, used in many hand soaps, deodorants, dishwashing liquids and other consumer products, account for an increasing proportion of total dioxins in Mississippi River sediments, according to University of Minnesota research.

The study appears online in the May 18 issue of the journal Environmental Science and Technology.

The researchers, from the university's Institute of Technology (soon to be College of Science and Engineering), found that over the last 30 years, the levels of the four dioxins derived from triclosan have risen by 200 to 300 percent, while levels of all the other dioxins have dropped by 73 to 90 percent.

In April, the Food and Drug Administration announced it would study the safety of triclosan, which has been linked to disruptions of hormonal function and may also play a role in the evolution of bacterial resistance to antibiotics. In papers published in 2003 and 2009, university civil engineering professor William Arnold and his colleague Kristopher McNeill, a former professor in the university's Department of Chemistry, discovered that triclosan, when exposed to sunlight, generated a specific suite of four dioxins.

In the current study spearheaded by Jeff Buth, a recent Ph.D. graduate in chemistry (supervised by Arnold and McNeill), the researchers examined sediment core samples from Lake Pepin, an enlargement of the Mississippi River 120 miles downstream from the Minneapolis-St. Paul metro area. The sediment cores, containing a record of pollutant accumulation in the lake for the past 50 years, were analyzed for triclosan, the four dioxins derived from triclosan, and the entire family of dioxin chemicals. The study was a collaborative effort between researchers at the University of Minnesota, Pace Analytical (Minneapolis), the Science Museum of Minnesota and Virginia Tech.

“These four dioxins only come from triclosan. They didn’t exist in Lake Pepin before triclosan was introduced,” Arnold said. “In the most current sediments, these triclosan-derived dioxins account for about 30 percent of the total dioxin mass.”

Triclosan was first added to commercial liquid hand soap in 1987, and by 2001 about 76 percent of commercial liquid hand soaps contained it, researchers say. About 96 percent of triclosan from consumer products is disposed of in residential drains, leading to large loads of the chemical in water entering wastewater treatment plants.

Triclosan is incompletely removed during the wastewater treatment process, and when treated wastewater is released to the environment, sunlight converts some of the triclosan (and related compounds) into dioxins. Triclosan and the dioxins ended up in Lake Pepin sediments by sticking to organic particles in the river, which then sank when they reached the calmer waters of the lake.

The toxicity of the dioxins derived from triclosan currently is not well understood, nor is the extent of their distribution in the environment at large, Arnold says.

To read the complete study, visit http://pubs.acs.org/doi/abs/10.1021/es1001105

Ryan Maus | EurekAlert!
Further information:
http://www.umn.edu

More articles from Ecology, The Environment and Conservation:

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>