Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M ecologist: Future forests may soak up more carbon dioxide than previously believed

14.10.2011
North American forests appear to have a greater capacity to soak up heat-trapping carbon dioxide gas than researchers had previously anticipated.

As a result, they could help slow the pace of human-caused climate warming more than most scientists had thought, a U-M ecologist and his colleagues have concluded.

The results of a 12-year study at an experimental forest in northeastern Wisconsin challenge several long-held assumptions about how future forests will respond to the rising levels of atmospheric carbon dioxide blamed for human-caused climate change, said University of Michigan microbial ecologist Donald Zak, lead author of a paper published online this week in Ecology Letters.

"Some of the initial assumptions about ecosystem response are not correct and will have to be revised," said Zak, a professor at the U-M School of Natural Resources and Environment and the Department of Ecology and Evolutionary Biology in the College of Literature, Science, and the Arts.

To simulate atmospheric conditions expected in the latter half of this century, Zak and his colleagues continuously pumped extra carbon dioxide into the canopies of trembling aspen, paper birch and sugar maple trees at a 38-acre experimental forest in Rhinelander, Wis., from 1997 to 2008.

Some of the trees were also bathed in elevated levels of ground-level ozone, the primary constituent in smog, to simulate the increasingly polluted air of the future. Both parts of the federally funded experiment---the carbon dioxide and the ozone treatments---produced unexpected results.

In addition to trapping heat, carbon dioxide is known to have a fertilizing effect on trees and other plants, making them grow faster than they normally would. Climate researchers and ecosystem modelers assume that in coming decades, carbon dioxide's fertilizing effect will temporarily boost the growth rate of northern temperate forests.

Previous studies have concluded that this growth spurt would be short-lived, grinding to a halt when the trees can no longer extract the essential nutrient nitrogen from the soil.

But in the Rhinelander study, the trees bathed in elevated carbon dioxide continued to grow at an accelerated rate throughout the 12-year experiment. In the final three years of the study, the CO2-soaked trees grew 26 percent more than those exposed to normal levels of carbon dioxide.

It appears that the extra carbon dioxide allowed trees to grow more small roots and "forage" more successfully for nitrogen in the soil, Zak said. At the same time, the rate at which microorganisms released nitrogen back to the soil, as fallen leaves and branches decayed, increased.

"The greater growth has been sustained by an acceleration, rather than a slowing down, of soil nitrogen cycling," Zak said. "Under elevated carbon dioxide, the trees did a better job of getting nitrogen out of the soil, and there was more of it for plants to use."

Zak stressed that growth-enhancing effects of CO2 in forests will eventually "hit the wall" and come to a halt. The trees' roots will eventually "fully exploit" the soil's nitrogen resources. No one knows how long it will take to reach that limit, he said.

The ozone portion of the 12-year experiment also held surprises.

Ground-level ozone is known to damage plant tissues and interfere with photosynthesis. Conventional wisdom has held that in the future, increasing levels of ozone would constrain the degree to which rising levels of carbon dioxide would promote tree growth, canceling out some of a forest's ability to buffer projected climate warming.

In the first few years of the Rhinelander experiment, that's exactly what was observed. Trees exposed to elevated levels of ozone did not grow as fast as other trees. But by the end of study, ozone had no effect at all on forest productivity.

"What happened is that ozone-tolerant species and genotypes in our experiment more or less took up the slack left behind by those who were negatively affected, and that's called compensatory growth," Zak said. The same thing happened with growth under elevated carbon dioxide, under which some genotypes and species fared better than others.

"The interesting take home point with this is that aspects of biological diversity---like genetic diversity and plant species compositions---are important components of an ecosystem's response to climate change," he said. "Biodiversity matters, in this regard."

Co-authors of the Ecology Letters paper were Kurt Pregitzer of the University of Idaho, Mark Kubiske of the U.S. Forest Service and Andrew Burton of Michigan Technological University. The work was funded by grants from the U.S. Department of Energy and the U.S. Forest Service.

Jim Erickson | EurekAlert!
Further information:
http://www.umich.edu

More articles from Ecology, The Environment and Conservation:

nachricht Species may appear deceptively resilient to climate change
24.11.2017 | University of California - Davis

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>