Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


U of C scientists find successful way to reduce bat deaths at wind turbines

Preventative steps have minimal impact on economics and energy generated at test facility

Scientists at the University of Calgary have found a way to reduce bat deaths from wind turbines by up to 60 percent without significantly reducing the energy generated from the wind farm. The research, recently published in the Journal of Wildlife Management, demonstrates that slowing turbine blades to near motionless in low-wind periods significantly reduces bat mortality.

"Biologically, this makes sense as bats are more likely to fly when wind speeds are relatively low. When it's really windy, which is when the turbines are reaping the most energy, bats don't like to fly. There is a potential for biology and economics to mesh nicely," says U of C biology professor Robert Barclay, who co-authored the paper with PhD student Erin Baerwald of the U of C as well as with Jason Edworthy and Matt Holder of TransAlta Corporation.

Last year, a groundbreaking Barclay-Baerwald study shed new light about the reasons for bat deaths under wind turbines in the Pincher Creek area. Researchers found that the majority of migratory bats in this southern Alberta location were killed because a sudden drop in air pressure near the blades caused injuries to the bats' lungs known as barotrauma. Although the respiratory systems in birds can withstand such drops, the physiology of bats' lungs does not allow for the sudden change of pressure.

The next step was to find a way to mitigate the deaths. TransAlta, Canada's largest publicly traded provider of renewable energy, initiated a follow-up study at the same site to determine what could be done.

"Wind power has come of age, so further minimizing the impact of wind farms on the surrounding ecology is always important to our industry," says Jason Edworthy, director of Community Relations for TransAlta. "Working with the university during the course of this four-year study has given TransAlta the opportunity to test real world strategies that benefit affected bat populations and make economic sense."

Until recently, wildlife concerns regarding wind energy focused primarily on bird fatalities. But bat fatalities now outnumber those of birds due, in part, to efforts to mitigate bird deaths by wind turbines.

Most bats killed at wind energy facilities across North America are migratory tree bats, including hoary and silver-haired bats. The deaths occur during autumn migration from Canada and the Northern U.S. to the southern U.S. or Mexico.

"Given that more bat fatalities occur in low wind speeds and the relative ease of manipulating operation of turbines, we examined whether reducing the amount that turbine rotors turn in low wind speeds would reduce bat fatalities," says Baerwald.

Over the one-month experiment total revenue lost from the 15 turbines was estimated between $3,000 and $4,000.

TransAlta has already applied the low wind mitigation strategy to the 38 turbines identified in the study area. "The findings from the study area are promising and this new mode of operation is now in place and will be applied to new wind farms," says Edworthy.

"Although these are promising mitigation techniques, further experiments are needed to assess costs and benefits at other locations," says Barclay.

The journal article, A Large-Scale Mitigation Experiment to Reduce Bat Fatalities at Wind energy Facilities, can be found online at:

Related U of C story:

Related Calgary Herald Story:


Leanne Yohemas
Senior Communications Manager
University of Calgary - Faculty of Science
T: 403-220-5144
C: 403-540-6552
Michael Lawrence
Manager, External Relations
Phone: (403) 267-7330

Leanne Yohemas | EurekAlert!
Further information:

Further reports about: Calgary TransAlta renewable energy wind farms wind speed wind turbine

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>