Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of C alumnus finds high numbers of heat-loving bacteria in cold Arctic Ocean

21.09.2009
Results point to potential use of microbes in offshore oil and gas exploration

A team of scientists led by U of C grad Casey Hubert has detected high numbers of heat loving, or thermophilic, bacteria in subzero sediments in the Arctic Ocean off the Norwegian island of Spitsbergen.

The bacterial spores might provide a unique opportunity to trace seepages of fluids from hot sub-seafloor habitats, possibly pointing towards undiscovered offshore petroleum reservoirs.

These thermophiles exist in the Arctic Ocean sediment as spores — dormant forms that withstand adverse conditions for long periods, waiting for better times. Experimental incubations at 40 to 60 degrees Celsius revive the Arctic spores, which appear to have been transported from deeper hot spots.

"The genetic similarities to bacteria from hot offshore oil reservoirs are striking," says Hubert. After completing his PhD in petroleum microbiology at University of Calgary, Hubert traveled to Bremen, Germany, with an NSERC post-doctoral fellowship to study the Arctic thermophiles at the renowned Max Planck Institute for Marine Microbiology. "We expect ongoing surveys will pin-point the source, or sources, of these misplaced microbes. This could have interesting applications if they are really coming up from leaky petroleum reservoirs."

Because these bacteria are anaerobic, their high abundance and steady supply into the sediments indicate they are coming from a huge oxygen-free habitat. Hubert says one source could be a deep pressurized oil reservoir from which upward-leaking hydrocarbons carry bacteria into overlying seawater. Another source could be related to fluid circulation through warm ocean crust at spreading ridges where "black smokers" and other hydrothermal vents are present. The thermophiles must be getting carried out of one of these abyssal hot spots and may be dispersed by ocean currents before ending up as hibernating spores in the cold sediments, where they were discovered.

"We hope further experiments and genetic forensics will reveal the warm source," adds Max Planck Director Prof. Bo Barker Jørgensen.

While the spores might provide an opportunity to track marine hot spots, they also offer fresh insight for understanding biodiversity and the "hidden rare biosphere." The dominant bacterial species in a given environment obscure many minor groups that don't seem to participate in ecosystem functioning. Dormant thermophiles in the cold ocean could be a useful model for understanding how biodiversity is maintained by the passive dispersal of small cells over great distances. "The Arctic thermophiles could hold important clues for solving broader riddles of bio-geography," says Hubert.

A Constant Flux of Diverse Thermophilic Bacteria into the Cold Arctic Seabed by Casey Hubert, Alexander Loy, Maren Nickel, Carol Arnosti, Christian Baranyi, Volker Brüchert, Timothy Ferdelman, Kai Finster, Flemming Mønsted Christensen, Júlia Rosa de Rezende, Verona Vandieken, and Bo Barker Jørgensen, will be published in the journal Science on September 18, 2009. www.sciencemag.org

This research was supported by the Natural Sciences and Engineering Research Council of Canada, the Max Planck Society, the Austrian Science Fund, and the US National Science Foundation.

Leanne Yohemas | EurekAlert!
Further information:
http://www.ucalgary.ca

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>