Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turtle migration directly influenced by ocean drift experiences as hatchlings

14.05.2014

New research has found that adult sea-turtle migrations and their selection of feeding sites are directly influenced by their past experiences as little hatchlings adrift in ocean currents.

When they breed, adult sea turtles return to the beach where they were born. After breeding, adult sea turtles typically migrate several hundreds to thousands of kilometres to their feeding habitats. However, there has been little information about how turtles chose their feeding sites. For example, some turtles migrate to feeding habitats thousands of kilometres away, while other turtles don't migrate or feed in the open ocean.


A green turtle in its coastal feeding ground in the Pacific Ocean.

Credit: Dr. Rebecca Scott


This is a new-born loggerhead turtle.

Credit: Dr. Rebecca Scott

The study, which involves the University of Southampton, looked at what habitats the turtles would have experienced as juveniles. New-born hatchling sea turtles are too small to track with satellite tags. However, when they emerge from their eggs, they head to the ocean and drift with ocean currents to their juvenile development habitats. The researchers combined all the available satellite tracking data on adult turtles with models of how the world's sea water moves past nesting sites to study where the hatchling sea turtles drift to.

By comparing global patterns in the migrations of all satellite tracked sea turtles with global hatchling drift patterns, they showed that adult sea turtle migrations and foraging habitat selections were based on their past experiences drifting with ocean currents.

Dr Rebecca Scott, who led the study soon to be reported in the journal Ecology, says: "Hatchlings' swimming abilities are pretty weak, and so they are largely at the mercy of the currents. If they drift to a good site, they seem to imprint on this location, and then later actively go there as an adult; and because they're bigger and stronger they can swim there directly," explained Dr Scott, who is based at the GEOMAR Helmholtz Centre for Ocean Research in Kiel, Germany.

"Conversely, if the hatchlings don't drift to sites that are suitable for adult feeding, you see that reflected in the behaviour of the adults, which either do not migrate or they feed in the open ocean, which is not the normal strategy for most turtle species."

Many animal groups undertake great migrations, and the process of learning where to go on these travels can take several forms. For example, some juvenile whales and birds learn migration routes by following their mothers or more experienced group members, whilst other bird and insect species seem to be born with the information or a map sense that informs them where they should migrate.

However, neither of these strategies works for turtles. Once the adult female has laid her eggs on a beach, her involvement in her offspring's development ends. When the hatchlings crawl down the beach into the water, they are on their own; there is no experienced turtle to follow, and they go where the ocean takes them.

Dr Bob Marsh from the University of Southampton, who was Dr Scott's supervisor and co-author of the study, said: "Although it is known that ocean currents have a large influence on the dispersion of small planktonic organisms, these findings reveal ocean currents also directly shape some the migrations of some of the largest, most powerful long distance migrants in the animal kingdom."

Glenn Harris | Eurek Alert!

Further reports about: GEOMAR experiences green turtles hatchlings satellite species strategies turtles whales

More articles from Ecology, The Environment and Conservation:

nachricht New approach for environmental test on livestock drugs
27.07.2016 | Universität Zürich

nachricht Managing an endangered river across the US-Mexico border
18.07.2016 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

Im Focus: Every atom counts

Malignant cancer cells not only proliferate faster than most body cells. They are also more dependent on the most important cellular garbage disposal unit, the proteasome, which degrades defective proteins. Therapies for some types of cancer exploit this dependence: Patients are treated with inhibitors, which block the proteasome. The ensuing pile-up of junk overwhelms the cancer cell, ultimately killing it. Scientists have now succeeded in determining the human proteasome’s 3D structure in unprecedented detail and have deciphered the mechanism by which inhibitors block the proteasome. Their results will pave the way to develop more effective proteasome inhibitors for cancer therapy.

In order to understand how cellular machines such as the proteasome work, it is essential to determine their three-dimensional structure in detail. With its...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

Towards the connected, automated and electrified automobiles: AMAA conference in Brussels

02.08.2016 | Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

 
Latest News

New microchip demonstrates efficiency and scalable design

23.08.2016 | Information Technology

Genetic Regulation of the Thymus Function Identified

23.08.2016 | Life Sciences

Biomass turnover time in ecosystems is halved by land use

23.08.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>