Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tunnels concentrate air pollution by up to 1000 times

28.08.2009
A toxic cocktail of ultrafine particles is lurking inside road tunnels in concentration levels so high they have the potential to harm drivers and passengers, a new study has found.

The study, which has been published in Atmospheric Environment, measured ultrafine particle concentration levels outside a vehicle travelling through the M5 East tunnel in Sydney.

Study co-author and director of Queensland University of Technology's International Laboratory for Air Quality and Health, Professor Lidia Morawska, said road tunnels were locations where maximum exposure to dangerous ultrafine particles in addition to other pollutants occurred.

"The human health effects of exposure to ultrafine particles produced by fuel combustion are generally regarded as detrimental," Professor Morawska said.

"Effects can range from minor respiratory problems in healthy people, to acute myocardial infarction (heart attack) in people with existing heart complaints.

Professor Morawska said the study involved more than 300 trips through the four kilometres of the M5 East tunnel, with journeys lasting up to 26 minutes, depending on traffic congestion.

"What this study aimed to do was identify the concentration levels found in the tunnel. It generated a huge body of data on the concentrations and the results show that, at times, the levels are up to 1000 times higher than in urban ambient conditions," she said.

She said drivers and occupants of new vehicles which had their windows closed were safer than people travelling in older vehicles.

"People who are driving older vehicles which are inferior in terms of tightness and also those riding motorcycles or driving convertibles, these people are exposed to incredibly high concentrations," she said.

"When compared with similar studies reported previously, the measurements here were among the highest recorded concentrations," she said.

Professor Morawska said tunnels were becoming an increasingly necessary infrastructure component in many cities across the world.

"When governments are building tunnels for urban design reasons, they should also consider the impact these tunnels are having on the environment and to people's health," she said.

"The study highlights why governments need to consider how they are going to deal with the air pollution levels inside the tunnel and removal of ultrafine particles in the outside environment."

The study was conducted jointly by Professor Richard de Dear and his doctoral candidate, Mr Luke Knibbs from Macquarie University, in collaboration with Professor Morawska and Dr Kerrie Mengersen from QUT.

Media contact - Rachael Wilson, QUT media officer on 3138 1150 or rachael.wilson@qut.edu.au

Rachael Wilson | EurekAlert!
Further information:
http://www.qut.edu.au

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

For a chimpanzee, one good turn deserves another

27.06.2017 | Life Sciences

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>