Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Troubled waters: Low Apalachicola River flow may hurt gulf fisheries

23.06.2009
Reductions in the flow of the Apalachicola River have far-reaching effects that could prove detrimental to grouper and other reef fish populations in the northeastern Gulf of Mexico, according to a new Florida State University study that may provide new ammunition for states engaged in a nearly two-decade water war.

The Florida State researchers found that in years with low river flow, the concentration of phytoplankton -- the microscopic plant-like organisms that feed into the food chain -- decreased over a large area of the continental shelf.

This is significant because scientists have hypothesized that year-to-year changes in the phytoplankton can alter the availability of food for the very young fish larvae, according to research scientist Steven Morey of the Center for Ocean-Atmospheric Prediction Studies (COAPS) at Florida State.

Though much of the scientific research examining the consequences of low-flow conditions, primarily caused by extended drought in recent years, has focused on the Apalachicola River and the estuary system of Apalachicola Bay, the Florida State researchers instead examined the effect of unusually low and high flows over the wide western Florida continental shelf. A number of important reef fish, such as grouper, spawn on the outer shelf edge and use the inner shelf areas as nursery habitat.

"This work shows that variations in the river flow can have implications on marine ecosystems over a much broader geographic region, namely much of the continental shelf extending out several hundred miles," Morey said. "This now suggests that there might be a link between the river flow variations and offshore fisheries."

Morey, Dmitry Dukhovskoy, also of COAPS, and Mark Bourassa, an associate professor of meteorology at FSU, examined the seasonal and year-to-year variability of the river flow caused by changes in precipitation over the watershed encompassing much of western Georgia and parts of eastern Alabama and the Florida Panhandle. The researchers used satellite ocean color data and computer models of ocean circulation to identify a region extending about 125 miles offshore of Apalachicola Bay in which the changes in ocean color, which is indicative of the abundance of phytoplankton and other organic material in the water, is linked to changes in the river flow.

The researchers outlined their findings in an article, "Connectivity of the Apalachicola River flow variability and the physical and bio-optical oceanic properties of the northern West Florida Shelf," published in the journal Continental Shelf Research.

The findings broaden the environmental considerations of managed flow reductions in the Apalachicola-Chattahoochee-Flint (ACF) river system. The Apalachicola River, the final leg of the river system, has been the focus of a nearly 20-year legal battle between Florida, Georgia and Alabama, known as the Tri-State Water War. At the heart of the dispute is Georgia's desire to divert water from the ACF river system to the burgeoning population of the Atlanta metropolitan area, and Florida and Alabama's contention that this flow reduction could have negative consequences for the downstream river environment.

The Apalachicola River is considered a "hot spot" of ecological biodiversity, and Apalachicola Bay supports extensive finfish and shellfish communities dependent on the regular flow of freshwater from the river. The river is a source of nutrients that can contribute to the abundance of phytoplankton, which are consumed by small zooplankton, thus feeding the marine food web in the region. The strongest connection between the river flow rate and the offshore water properties is seen during the late winter and early spring months, which coincide with the spawning period of several reef fish species.

"It is possible that if the natural flow of the river is reduced by water being diverted to reservoirs upstream, it could reduce the natural nutrient supply to the local food web," Morey said. "That could potentially result in a reduction of food available for larger plankton, like fish larvae."

The study sheds some light on potential effects of climate change scenarios altering precipitation patterns over the southeastern United States, Morey said, but further study is needed to determine if the proposed man-made flow reductions at the center of the water wars will have a significant impact on the offshore marine systems, especially during abnormally dry years.

Steven Morey | EurekAlert!
Further information:
http://www.fsu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>