Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tree-Ring Data Show History, Pattern to Droughts

19.02.2013
Distinguished Professor presents at 2013 AAAS meeting in Boston

Dendrochronologists have shown that tree-ring data produce a remarkably accurate history of droughts and other climate changes.

Combined with reliable drought indices and historical descriptions of climate conditions, dendrochronology – the technique of dating events and environmental change by relying on characteristic patterns of tree-ring growth – can provide a climate perspective on important events such as large-scale human migration and even the rise and fall of entire civilizations.

A research team, including University of Arkansas Distinguished Professor and dendrochronologist David Stahle and Ewing Research Professor Edward Cook of Columbia University, used more than 1,400 climate-sensitive tree-ring chronologies from multiple tree species across North America to reconstruct the Palmer drought severity index (PDSI), a widely used soil moisture index. Stahle presented his research Friday, Feb. 15, in a symposium on “U.S. Climate and Weather Extremes: Past, Present, and Future,” during the American Association for the Advancement of Science annual meeting in Boston. He also participated in a panel discussion with other climate experts.

The Palmer drought severity index is based on instrumental temperature and precipitation data dating back to 1895. Stahle and his colleagues inserted the index between fixed points on a grid covering most of North America. Their tree-ring reconstructions cover the same geographic area but extend back to 800 A.D.

Stahle wanted to examine the reconstructed indices to test the accuracy of the records and to see if there were any patterns related to drought and other climate changes. The findings were dramatic.

“Comparisons of reconstructed PDSI with instrumentally measured PDSI during the 20th century document the remarkable accuracy with which the tree-ring data reproduce the spatial pattern and intensity of observed drought at annual and decadal time scales, including the Dust Bowl drought of the 1930s,” Stahle said.

The data also confirmed historical descriptions of climate conditions prior to the modern era of instrumentation for weather and climate measurements. For these comparisons, the researchers relied on accounts from Zebulon Pike’s 1806-1807 expedition and from Stephen H. Long’s 1820 exploration. Both expeditions described extremely dry conditions across much of the Great Plains and Rocky Mountains.

The researchers analyzed the reconstructions and found a pattern of droughts over the past few centuries similar to the 2011 drought centered over Texas and the Southern Plains as well as the 2012 Corn Belt drought.

“Both of these droughts have precedents in the centuries-long tree-ring reconstructions,” Stahle said. “In fact, the tree-ring data document drought anomalies in prehistory with a similar severity and spatial impact that persisted for two to three years. Severe drought over the Corn Belt and southern Great Plains are likely to recur, especially with continued warming over the United States.”

The tree-ring reconstructions of the Palmer index indicated that the Great Pueblo Drought, which occurred from 1276 to 1297 and may have contributed to the abandonment of the northern Colorado Plateau by the ancient Pueblo, affected a larger geographic area than originally thought. The findings indicated that this drought covered the entire southwestern United States and included drought in both the winter and early growing season.

For more than a decade, Stahle has taken core samples from trees and examined the chronology of their rings to help explain the societal impact of drought and other climate changes. Specifically, his research has added rich information to explanations about the migration of North America’s indigenous people and the demise of Mesoamerican civilization.

A recently published 1,238-year-long tree-ring chronology, the longest and most accurate of its kind for Mesoamerica, was the first to reconstruct the climate of pre-colonial Mexico on an annual basis for more than a millennium. That study identified four ancient megadroughts and their exact years. Previous research found large and epic droughts over North America during the 8th and 16th centuries.

Matt McGowan | Newswise
Further information:
http://www.uark.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>