Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tree-Ring Data Show History, Pattern to Droughts

19.02.2013
Distinguished Professor presents at 2013 AAAS meeting in Boston

Dendrochronologists have shown that tree-ring data produce a remarkably accurate history of droughts and other climate changes.

Combined with reliable drought indices and historical descriptions of climate conditions, dendrochronology – the technique of dating events and environmental change by relying on characteristic patterns of tree-ring growth – can provide a climate perspective on important events such as large-scale human migration and even the rise and fall of entire civilizations.

A research team, including University of Arkansas Distinguished Professor and dendrochronologist David Stahle and Ewing Research Professor Edward Cook of Columbia University, used more than 1,400 climate-sensitive tree-ring chronologies from multiple tree species across North America to reconstruct the Palmer drought severity index (PDSI), a widely used soil moisture index. Stahle presented his research Friday, Feb. 15, in a symposium on “U.S. Climate and Weather Extremes: Past, Present, and Future,” during the American Association for the Advancement of Science annual meeting in Boston. He also participated in a panel discussion with other climate experts.

The Palmer drought severity index is based on instrumental temperature and precipitation data dating back to 1895. Stahle and his colleagues inserted the index between fixed points on a grid covering most of North America. Their tree-ring reconstructions cover the same geographic area but extend back to 800 A.D.

Stahle wanted to examine the reconstructed indices to test the accuracy of the records and to see if there were any patterns related to drought and other climate changes. The findings were dramatic.

“Comparisons of reconstructed PDSI with instrumentally measured PDSI during the 20th century document the remarkable accuracy with which the tree-ring data reproduce the spatial pattern and intensity of observed drought at annual and decadal time scales, including the Dust Bowl drought of the 1930s,” Stahle said.

The data also confirmed historical descriptions of climate conditions prior to the modern era of instrumentation for weather and climate measurements. For these comparisons, the researchers relied on accounts from Zebulon Pike’s 1806-1807 expedition and from Stephen H. Long’s 1820 exploration. Both expeditions described extremely dry conditions across much of the Great Plains and Rocky Mountains.

The researchers analyzed the reconstructions and found a pattern of droughts over the past few centuries similar to the 2011 drought centered over Texas and the Southern Plains as well as the 2012 Corn Belt drought.

“Both of these droughts have precedents in the centuries-long tree-ring reconstructions,” Stahle said. “In fact, the tree-ring data document drought anomalies in prehistory with a similar severity and spatial impact that persisted for two to three years. Severe drought over the Corn Belt and southern Great Plains are likely to recur, especially with continued warming over the United States.”

The tree-ring reconstructions of the Palmer index indicated that the Great Pueblo Drought, which occurred from 1276 to 1297 and may have contributed to the abandonment of the northern Colorado Plateau by the ancient Pueblo, affected a larger geographic area than originally thought. The findings indicated that this drought covered the entire southwestern United States and included drought in both the winter and early growing season.

For more than a decade, Stahle has taken core samples from trees and examined the chronology of their rings to help explain the societal impact of drought and other climate changes. Specifically, his research has added rich information to explanations about the migration of North America’s indigenous people and the demise of Mesoamerican civilization.

A recently published 1,238-year-long tree-ring chronology, the longest and most accurate of its kind for Mesoamerica, was the first to reconstruct the climate of pre-colonial Mexico on an annual basis for more than a millennium. That study identified four ancient megadroughts and their exact years. Previous research found large and epic droughts over North America during the 8th and 16th centuries.

Matt McGowan | Newswise
Further information:
http://www.uark.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>