Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tree-Ring Data Show History, Pattern to Droughts

19.02.2013
Distinguished Professor presents at 2013 AAAS meeting in Boston

Dendrochronologists have shown that tree-ring data produce a remarkably accurate history of droughts and other climate changes.

Combined with reliable drought indices and historical descriptions of climate conditions, dendrochronology – the technique of dating events and environmental change by relying on characteristic patterns of tree-ring growth – can provide a climate perspective on important events such as large-scale human migration and even the rise and fall of entire civilizations.

A research team, including University of Arkansas Distinguished Professor and dendrochronologist David Stahle and Ewing Research Professor Edward Cook of Columbia University, used more than 1,400 climate-sensitive tree-ring chronologies from multiple tree species across North America to reconstruct the Palmer drought severity index (PDSI), a widely used soil moisture index. Stahle presented his research Friday, Feb. 15, in a symposium on “U.S. Climate and Weather Extremes: Past, Present, and Future,” during the American Association for the Advancement of Science annual meeting in Boston. He also participated in a panel discussion with other climate experts.

The Palmer drought severity index is based on instrumental temperature and precipitation data dating back to 1895. Stahle and his colleagues inserted the index between fixed points on a grid covering most of North America. Their tree-ring reconstructions cover the same geographic area but extend back to 800 A.D.

Stahle wanted to examine the reconstructed indices to test the accuracy of the records and to see if there were any patterns related to drought and other climate changes. The findings were dramatic.

“Comparisons of reconstructed PDSI with instrumentally measured PDSI during the 20th century document the remarkable accuracy with which the tree-ring data reproduce the spatial pattern and intensity of observed drought at annual and decadal time scales, including the Dust Bowl drought of the 1930s,” Stahle said.

The data also confirmed historical descriptions of climate conditions prior to the modern era of instrumentation for weather and climate measurements. For these comparisons, the researchers relied on accounts from Zebulon Pike’s 1806-1807 expedition and from Stephen H. Long’s 1820 exploration. Both expeditions described extremely dry conditions across much of the Great Plains and Rocky Mountains.

The researchers analyzed the reconstructions and found a pattern of droughts over the past few centuries similar to the 2011 drought centered over Texas and the Southern Plains as well as the 2012 Corn Belt drought.

“Both of these droughts have precedents in the centuries-long tree-ring reconstructions,” Stahle said. “In fact, the tree-ring data document drought anomalies in prehistory with a similar severity and spatial impact that persisted for two to three years. Severe drought over the Corn Belt and southern Great Plains are likely to recur, especially with continued warming over the United States.”

The tree-ring reconstructions of the Palmer index indicated that the Great Pueblo Drought, which occurred from 1276 to 1297 and may have contributed to the abandonment of the northern Colorado Plateau by the ancient Pueblo, affected a larger geographic area than originally thought. The findings indicated that this drought covered the entire southwestern United States and included drought in both the winter and early growing season.

For more than a decade, Stahle has taken core samples from trees and examined the chronology of their rings to help explain the societal impact of drought and other climate changes. Specifically, his research has added rich information to explanations about the migration of North America’s indigenous people and the demise of Mesoamerican civilization.

A recently published 1,238-year-long tree-ring chronology, the longest and most accurate of its kind for Mesoamerica, was the first to reconstruct the climate of pre-colonial Mexico on an annual basis for more than a millennium. That study identified four ancient megadroughts and their exact years. Previous research found large and epic droughts over North America during the 8th and 16th centuries.

Matt McGowan | Newswise
Further information:
http://www.uark.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>