Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tree resin the key evidence of current and historic insect invasions

A University of Alberta-led research team has discovered that insects that bore into trees as long ago 90 million years, or as recently as last summer, leave a calling card that's rich with information.

The information is contained in the resin found within trees and on their bark. Resin is produced in large quantities by a tree when it's under attack by insects.

Normally, to assess if a tree is under an attack from boring insects researchers have sometimes had to rip patches of bark from healthy trees. But now forestry workers looking for the telltale sign of insect borings in tree trunks have a far less invasive method—they can just examine the resin that collects in clumps on the tree trunk.

An attack by boring beetles typically affects trees in two ways. The boring action damages the phloem layer just under the bark, which cuts off the passage of nutrients within the trunk. Also, beetles often introduce a fungus that spreads into the woody xylem tissue of the tree and starves the treetop of water. A side-effect of insect invasion and water stress is a reduction in the tree's ability to absorb carbon dioxide from the atmosphere. Carbon dioxide is necessary for life-sustaining photosynthesis.

The research team, including U of A paleontology graduate student Ryan McKellar, looked for subatomic-sized isotopic evidence that indicates water stress levels in trees as a result of an insect attack.

The team discovered a common marker in carbon isotopes found in the resin of living trees under insect attack and in the fossilized resin or amber produced by ancient trees going as far back as the age of dinosaurs: they both contain elevated levels of carbon-13.

McKellar's group also found evidence of boring beetles and the increased presence of carbon-13 within amber fossils dating back in the geological record to 90 million and 17 million years ago. The locations are as geographically removed as present-day New Jersey and the Dominican Republic.

With this finding the researchers suggest that two or the world's major amber deposits may have been produced by insect attacks like mountain pine beetle that are seen in modern ecosystems.

This discovery will help researchers understand the history of insect infestations.

McKellar's research will be published March 23 in Proceedings of the Royal Society B: Biological Sciences.

Brian Murphy | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>