Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One tree's architecture reveals secrets of a forest, study finds

07.08.2013
Behind the dazzling variety of shapes and forms found in trees hides a remarkably similar architecture based on fundamental, shared principles, UA ecologists have discovered

Researchers in the University of Arizona's department of ecology and evolutionary biology have found that despite differences in appearance, trees across species share remarkably similar architecture and can tell scientists a lot about an entire forest.

Just by looking at a tree's branching pattern, it turns out, scientists can gather clues about how it functions – for example how much carbon dioxide it exchanges with the atmosphere or how much water transpires through its leaves – regardless of the tree's shape or species.

The researchers' results, published in the August issue of the scientific journal Ecology Letters, have important implications for models used by scientists to assess how trees influence ecosystems across the globe.

Studies like this enable scientists to refine models used to assess and predict functions that cannot be directly measured for an entire forest, for example how much carbon dioxide and oxygen the forest exchanges with the atmosphere and how much water the trees lose through evaporation.

According to the authors, their study is the first empirical test of a theory UA ecology professor Brian Enquist helped develop in 1998. That theory holds that a tree's branching structure – specifically, the width and length of its branches – predicts how much carbon and water a tree exchanges with the environment in relation to its overall size, independently of the species.

"This theory can be used to scale the size of plants to their function, such as amount of photosynthesis, water loss and respiration, especially in light of climate change," said Lisa Patrick Bentley, who led the research, funded by the National Science Foundation, as part of a postdoctoral fellowship in Enquist's lab. "If you were to look at an entire forest and wanted to know how much carbon this forest puts out, our study supports the idea that you might only have to look at the properties of a few trees, representing the smallest and the largest, to figure this out."

"All of the tree species we studied have very similar branching patterns regardless of their difference in appearance," she said. "For example, even though a piñon pine tree looks very different from a maple tree, there are similar general ecological, biological and physical principles that have resulted in a similar branching architecture across those species over the course of evolution."

Bentley and her team tested this prediction in five different species of trees: maple, oak, balsa, Ponderosa pine and piñon pine. They found the theory to be correct in that it allows for predictions about a tree's function depending on its size, and also in that the theory's principles apply across species, despite their differences in appearance.

"There is a relationship between the size and shape of branches," Bentley said. "They grow within proportion. Take a pine tree, for example: It has the general shape of a cone, while an oak tree looks like more like an inverted cone. When you think about the many different shapes of trees, I think it's pretty amazing that you get this correlation between such different looking trees."

For their study, the researchers harvested a total of nine specimens from forest areas set aside for research purposes. A team of undergraduate and graduate student researchers dissected the trees down to the last twig, counting the number of branches, the number of branching points, or nodes, and measuring the length and diameter of each branch.

The work also confirmed an idea first proposed by Renaissance polymath Leonardo da Vinci.

"If you imagine collapsing all of a tree's outermost branches into one cylinder, that cylinder would be the size of the trunk," Bentley said. "According to Leonardo's rule, the total area of branches is conserved as you go from the trunk all the way to the branches at the top."

At the same time, the experiments revealed that actual tree branching patterns are more varied and complex than predicted by the theory.

"The theory assumes branching patterns based on fractals, which is the same perfectly symmetrical 'Y' branching pattern repeating over and over, but trees don't look like that," said Bentley, who currently is working in Peru as part of her research through a postdoctoral fellowship the University of Oxford. "If you look at two trees that are the same height and belong to the same species, you'll see more variability: one branch might branch two times, but its sister branch might branch three or four times."

"After testing the theory empirically, we conclude that generally speaking, the theory works well, but in some aspects it needs to be modified to incorporate more variation among species," said Bentley. "Based on our results, we think the theory should be modified to include asymmetrical branching."

Daniel Stolte | University of Arizona
Further information:
http://www.arizona.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>